TY - JOUR A1 - Räder, Andy A1 - Eisert, Jens A1 - Wilkens, Martin A1 - Schmidt, Robert A1 - Micka, Bettina A1 - Ostermeyer, Martin A1 - Zill, Rüdiger A1 - Baur, Jürgen A1 - Schmidt, Renate A1 - Leppin, Karin A1 - Slotowski, Agnes A1 - Resch-Esser, Ursula T1 - Portal = Albert Einsteins Erbe: Uni-Physiker forschen weiter BT - Die Potsdamer Universitätszeitung N2 - Aus dem Inhalt: - Albert Einsteins Erbe: Uni-Physiker forschen weiter - Uni-Studiengang im europäischen Exzellenzprogramm - Sternenstaubsammler - Mit Einfallsreichtum gegen den Trend T3 - Portal: Das Potsdamer Universitätsmagazin - 01-03/2005 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439846 SN - 1618-6893 IS - 01-03/2005 ER - TY - JOUR A1 - Wilken, Florian A1 - Baur, Martin A1 - Sommer, Michael A1 - Deumlich, Detlef A1 - Bens, Oliver A1 - Fiener, Peter T1 - Uncertainties in rainfall kinetic energy-intensity relations for soil erosion modelling JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - For bare soil conditions, the most important process driving and initiating splash and interrill erosion is the detachment of soil particles via raindrop impact. The kinetic energy of a rainfall event is controlled by the drop size and fall velocity distribution, which is often directly or indirectly implemented in erosion models. Therefore, numerous theoretical functions have been developed for the estimation of rainfall kinetic energy from available rainfall intensity measurements. The aim of this study is to assess differences inherent in a wide number of kinetic energy-rainfall intensity (KE-I) relations and their role in soil erosion modelling. Therefore, 32 KE-I relations are compared against measured rainfall energies based on optical distrometer measurements carried out at five stations of two substantially different rainfall regimes. These allow for continuous high-resolution (1-min) direct measurements of rainfall kinetic energies from a detailed spectrum of measured drop sizes and corresponding fall velocities. To quantify the effect of different KE-I relations on sediment delivery, we apply the erosion model WATEM/SEDEM in an experimental setup to four catchments of NE-Germany. The distrometer data shows substantial differences between measured and theoretical models of drop size and fall velocity distributions. For low intensities the number of small drops is overestimated by the Marshall and Palmer (1948; MP) drop size distribution, while for high intensities the proportion of large drops is overestimated by the MP distribution. The distrometer measurements show a considerable proportion of large drops falling at slower velocities than predicted by the Gunn and Kinzer (1949) terminal velocity model. For almost all rainfall events at all stations, the KE-I relations predicted higher cumulative kinetic energy sums compared to the direct measurements of the optical distrometers. The different KE-I relations show individual characteristics over the course of rainfall intensity levels. Our results indicate a high sensitivity (up to a range from 10 to 27 t ha(-1)) of the simulated sediment delivery related to different KE-I relations. Hence, the uncertainty associated with KE-I relations for soil erosion modelling is of critical importance. KW - Rainfall kinetic energy KW - Drop size distribution KW - Drop fall velocity KW - Soil erosion modelling KW - Optical distrometer Y1 - 2018 U6 - https://doi.org/10.1016/j.catena.2018.07.002 SN - 0341-8162 SN - 1872-6887 VL - 171 SP - 234 EP - 244 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - König, Niklas A1 - Reschke, Antje A1 - Wolter, Martin A1 - Müller, Steffen A1 - Mayer, Frank A1 - Baur, Heiner T1 - Plantar pressure trigger for reliable nerve stimulus application during dynamic H-reflex measurements JF - Gait & posture N2 - In dynamic H-reflex measurements, the standardisation of the nerve stimulation to the gait cycle is crucial to avoid misinterpretation due to altered pre-synaptic inhibition. In this pilot study, a plantar pressure sole was used to trigger the stimulation of the tibialis nerve with respect to the gait cycle. Consequently, the intersession reliability of the soleus muscle H-reflex during treadmill walking was investigated. Seven young participants performed walking trials on a treadmill at 5 km/h. The stimulating electrode was placed on the tibial nerve in the popliteal fossa. An EMG was recorded from the soleus muscle. To synchronize the stimulus to the gait cycle, initial heel strike was detected with a plantar pressure sole. Maximum H-reflex amplitude and M-wave amplitude were obtained and the Hmax/Mmax ratio was calculated. Data reveals excellent reliability, ICC = 0.89. Test-retest variability was 13.0% (+/- 11.8). The Bland-Altman analysis showed a systematic error of 2.4%. The plantar pressure sole was capable of triggering the stimulation of the tibialis nerve in a reliable way and offers a simple technique for the evaluation of reflex activity during walking. KW - Monosynaptic reflexes KW - Reflex reproducibility KW - Treadmill walking Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2012.09.021 SN - 0966-6362 VL - 37 IS - 4 SP - 637 EP - 639 PB - Elsevier CY - Clare ER - TY - CHAP A1 - Reschke, Antje A1 - Wolter, Martin A1 - Schöpflin, Marlene A1 - König, Niklas A1 - Mayer, Frank A1 - Baur, Heiner T1 - The effect of foot orthoses on peroneal H-reflex in treadmill walking a pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2012 SN - 0195-9131 VL - 44 SP - 943 EP - 943 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -