TY - JOUR A1 - Allan, Eric A1 - Weisser, Wolfgang W. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weigelt, Alexandra A1 - Roscher, Christiane A1 - Baade, Jussi A1 - Barnard, Romain L. A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fergus, Alexander J. F. A1 - Gleixner, Gerd A1 - Gubsch, Marlen A1 - Halle, Stefan A1 - Klein, Alexandra-Maria A1 - Kertscher, Ilona A1 - Kuu, Annely A1 - Lange, Markus A1 - Le Roux, Xavier A1 - Meyer, Sebastian T. A1 - Migunova, Varvara D. A1 - Milcu, Alexandru A1 - Niklaus, Pascal A. A1 - Oelmann, Yvonne A1 - Pasalic, Esther A1 - Petermann, Jana S. A1 - Poly, Franck A1 - Rottstock, Tanja A1 - Sabais, Alexander C. W. A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Steinbeiss, Sibylle A1 - Schwichtenberg, Guido A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Wilcke, Wolfgang A1 - Wirth, Christian A1 - Schmid, Bernhard T1 - A comparison of the strength of biodiversity effects across multiple functions JF - Oecologia N2 - In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination. KW - Bottom-up effects KW - Carbon cycling KW - Ecological synthesis KW - Ecosystem processes KW - Grasslands KW - Jena experiment KW - Nitrogen cycling Y1 - 2013 U6 - https://doi.org/10.1007/s00442-012-2589-0 SN - 0029-8549 VL - 173 IS - 1 SP - 223 EP - 237 PB - Springer CY - New York ER - TY - JOUR A1 - Scherber, Christoph A1 - Eisenhauer, Nico A1 - Weisser, Wolfgang W. A1 - Schmid, Bernhard A1 - Voigt, Winfried A1 - Fischer, Markus A1 - Schukze, Ernst-Detlef A1 - Roscher, Christiane A1 - Weigelt, Alexandra A1 - Allan, Eric A1 - Beßler, Holger A1 - Bonkowski, Michael A1 - Buchmann, Nina A1 - Buscot, François A1 - Clement, Lars W. A1 - Ebeling, Anne A1 - Engels, Christof A1 - Halle, Stefan A1 - Kertscher, Ilona A1 - Klein, Alexandra-Maria A1 - Koller, Robert A1 - König, Stephan A1 - Kowalski, Esther A1 - Kummer, Volker A1 - Kuu, Annely A1 - Lange, Markus A1 - Lauterbach, Dirk T1 - Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment Y1 - 2010 UR - http://www.nature.com/nature/journal/v468/n7323/full/nature09492.html SN - 0028-0836 ER - TY - JOUR A1 - Fischer, Markus A1 - Pfisterer, A. A1 - Joshi, Jasmin Radha A1 - Schmid, Bernhard T1 - Rapid decay of diversity-productivity relationships after invasion of experimental plant communities Y1 - 2004 ER - TY - GEN A1 - Prát, Tomáš A1 - Hajny ́, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnár, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1123 KW - apical-basal axis KW - arabidopsis-thaliana KW - root gravitropism KW - DNA-binding KW - gene-expression KW - transport KW - efflux KW - canalization KW - plants KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446331 SN - 1866-8372 IS - 1123 ER - TY - JOUR A1 - Prat, Tomas A1 - Hajny, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnar, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pgen.1007177 SN - 1553-7404 VL - 14 IS - 1 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Meyer, Sebastian Tobias A1 - Ptacnik, Robert A1 - Hillebrand, Helmut A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fischer, Markus A1 - Halle, Stefan A1 - Klein, Alexandra-Maria A1 - Oelmann, Yvonne A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Temperton, Vicky M. A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Biodiversity-multifunctionality relationships depend on identity and number of measured functions JF - Nature Ecology & Evolution N2 - Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species. Y1 - 2017 U6 - https://doi.org/10.1038/s41559-017-0391-4 SN - 2397-334X VL - 2 IS - 1 SP - 44 EP - 49 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Fischer, Markus A1 - van Kleunen, Mark A1 - Schmid, Bernhard T1 - Experimental life-history evolution: selection on the growth form of a clonal plant on its plasticity N2 - The growth form along the continuum from compact phalanx plants to more loosely packed guerilla plants is an important life-history trait in clonal plants. Prerequisite for its evolution is heritable genetic variation. Starting with 102 genotypes of the stoloniferous herb Ranunculus reptans, we performed one selection experiment on spatial spread per rosette as measure of guerillaness (broad-sense heritability 0.198) and another on plasticity in this trait in response to competition (broad-sense heritability 0.067). After two generations, spatial spread was 36.9% higher in the high line than in the low line (realized heritability +/- SE 0.149 +/- 0.039). Moreover, compared with the low line genotypes of the high line had fewer rosettes, a lower proportion of flowering rosettes, a higher proportion of rooted rosettes, more branches per rosette, longer internodes and longer leaves. In the second experiment, we found no significant direct response to selection for high and low plasticity in spatial spread (realized heritability +/- SE - 0.029 +/- 0.063), despite a significant correlated response in plasticity in the length of the first three stolon internodes. Our study indicates a high potential for further evolution of the clonal growth form in R. reptans, but not for its plasticity, and it demonstrates that the clonal growth form does not evolve independently of other clonal life- history characteristics Y1 - 2004 SN - 1010- 061x ER - TY - JOUR A1 - van Kleunen, Mark A1 - Fischer, Markus A1 - Schmid, Bernhard T1 - Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift N2 - We tested whether neighborhood density affects the clonal life history of the stoloniferous plant Ranunculus reptans through selection and genetic drift. After three generations of sexual reproduction of 16 low- and 16 high- density lines, we studied traits related to growth form and reproduction in a common competition free environment. A 7.7% lower branching frequency and slightly longer internodes indicated an evolutionary shift towards a less compact growth form under high neighborhood density, but because stolons grew also more vertically, horizontal spread per ramet was slightly decreased. Neighborhood density had no directional effects on the evolution of allocation to sexual and vegetative reproduction in R. reptans. Variation among replicated high-density lines was significantly lower than among replicated low-density lines in both growth form and reproductive characteristics, indicating less pronounced genetic drift under high neighborhood density. This study demonstrates that a clonal plant can respond to selection imposed by neighborhood density. Moreover, it shows that the effect of random genetic drift increases with decreasing neighborhood density. In a declining species, such as R. reptans in central Europe, this may lower the potential for adaptive evolutionary change and increase extinction risk Y1 - 2005 ER - TY - JOUR A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Bald, Ilko A1 - Schmid, Thomas T1 - Challenges in the quantification of nutrients in soils using laser-induced breakdown spectroscopy BT - a case study with calcium JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The quantification of the elemental content in soils with laser-induced breakdown spectroscopy (LIBS) is challenging because of matrix effects strongly influencing the plasma formation and LIBS signal. Furthermore, soil heterogeneity at the micrometre scale can affect the accuracy of analytical results. In this paper, the impact of univariate and multivariate data evaluation approaches on the quantification of nutrients in soil is discussed. Exemplarily, results for calcium are shown, which reflect trends also observed for other elements like magnesium, silicon and iron. For the calibration models, 16 certified reference soils were used. With univariate and multivariate approaches, the calcium mass fractions in 60 soils from different testing grounds in Germany were calculated. The latter approach consisted of a principal component analysis (PCA) of adequately pre-treated data for classification and identification of outliers, followed by partial least squares regression (PLSR) for quantification. For validation, the soils were also characterised with inductively coupled plasma optical emission spectroscopy (ICP OES) and X-ray fluorescence (XRF) analysis. Deviations between the LIBS quantification results and the reference analytical results are discussed. KW - Laser-induced breakdown spectroscopy (LIBS) KW - Soil KW - Multivariate data analysis KW - Principal component analysis (PCA) KW - Partial least squares regression (PLSR) Y1 - 2018 U6 - https://doi.org/10.1016/j.sab.2018.05.003 SN - 0584-8547 VL - 146 SP - 115 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Casel, Katrin A1 - Fernau, Henning A1 - Gaspers, Serge A1 - Gras, Benjamin A1 - Schmid, Markus L. T1 - On the complexity of the smallest grammar problem over fixed alphabets JF - Theory of computing systems N2 - In the smallest grammar problem, we are given a word w and we want to compute a preferably small context-free grammar G for the singleton language {w} (where the size of a grammar is the sum of the sizes of its rules, and the size of a rule is measured by the length of its right side). It is known that, for unbounded alphabets, the decision variant of this problem is NP-hard and the optimisation variant does not allow a polynomial-time approximation scheme, unless P = NP. We settle the long-standing open problem whether these hardness results also hold for the more realistic case of a constant-size alphabet. More precisely, it is shown that the smallest grammar problem remains NP-complete (and its optimisation version is APX-hard), even if the alphabet is fixed and has size of at least 17. The corresponding reduction is robust in the sense that it also works for an alternative size-measure of grammars that is commonly used in the literature (i. e., a size measure also taking the number of rules into account), and it also allows to conclude that even computing the number of rules required by a smallest grammar is a hard problem. On the other hand, if the number of nonterminals (or, equivalently, the number of rules) is bounded by a constant, then the smallest grammar problem can be solved in polynomial time, which is shown by encoding it as a problem on graphs with interval structure. However, treating the number of rules as a parameter (in terms of parameterised complexity) yields W[1]-hardness. Furthermore, we present an O(3(vertical bar w vertical bar)) exact exponential-time algorithm, based on dynamic programming. These three main questions are also investigated for 1-level grammars, i. e., grammars for which only the start rule contains nonterminals on the right side; thus, investigating the impact of the "hierarchical depth" of grammars on the complexity of the smallest grammar problem. In this regard, we obtain for 1-level grammars similar, but slightly stronger results. KW - grammar-based compression KW - smallest grammar problem KW - straight-line KW - programs KW - NP-completeness KW - exact exponential-time algorithms Y1 - 2020 U6 - https://doi.org/10.1007/s00224-020-10013-w SN - 1432-4350 SN - 1433-0490 VL - 65 IS - 2 SP - 344 EP - 409 PB - Springer CY - New York ER - TY - JOUR A1 - Fischer, Markus A1 - Winkler, Eckart A1 - Schmid, Bernhard T1 - Modelling the competitiveness of clonal plants by complementary analytical and simulation approaches Y1 - 1999 ER - TY - JOUR A1 - Fischer, Markus A1 - Matthies, D. A1 - Schmid, Bernhard T1 - Responses of rare calcareous grassland plants to elevated CO2: a field experiment with Gentianella germanica and Gentiana cruciata Y1 - 1997 ER - TY - JOUR A1 - Hector, Andy A1 - Hautier, Yann A1 - Saner, Philippe A1 - Wacker, Lukas A1 - Bagchi, Robert A1 - Joshi, Jasmin Radha A1 - Scherer-Lorenzen, Michael A1 - Spehn, Eva M. A1 - Bazeley-White, Ellen A1 - Weilenmann, Markus A1 - Caldeira, Maria da Conceição Brálio de Brito A1 - Dimitrakopoulos, Panayiotis G. A1 - Finn, John A. A1 - Huss-Danell, Kerstin A1 - Jumpponen, Ari A1 - Mulder, Christa P. H. A1 - Palmborg, Cecilia A1 - Pereira, J. S. A1 - Siamantziouras, Akis S. D. A1 - Terry, Andrew C. A1 - Troumbis, Andreas Y. A1 - Schmid, Bernhard A1 - Loreau, Michel T1 - General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding N2 - Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk- spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems. Y1 - 2010 UR - http://esapubs.org/esapubs/journals/ecology.htm SN - 0012-9658 ER - TY - JOUR A1 - Casel, Katrin A1 - Dreier, Jan A1 - Fernau, Henning A1 - Gobbert, Moritz A1 - Kuinke, Philipp A1 - Villaamil, Fernando Sánchez A1 - Schmid, Markus L. A1 - van Leeuwen, Erik Jan T1 - Complexity of independency and cliquy trees JF - Discrete applied mathematics N2 - An independency (cliquy) tree of an n-vertex graph G is a spanning tree of G in which the set of leaves induces an independent set (clique). We study the problems of minimizing or maximizing the number of leaves of such trees, and fully characterize their parameterized complexity. We show that all four variants of deciding if an independency/cliquy tree with at least/most l leaves exists parameterized by l are either Para-NP- or W[1]-hard. We prove that minimizing the number of leaves of a cliquy tree parameterized by the number of internal vertices is Para-NP-hard too. However, we show that minimizing the number of leaves of an independency tree parameterized by the number k of internal vertices has an O*(4(k))-time algorithm and a 2k vertex kernel. Moreover, we prove that maximizing the number of leaves of an independency/cliquy tree parameterized by the number k of internal vertices both have an O*(18(k))-time algorithm and an O(k 2(k)) vertex kernel, but no polynomial kernel unless the polynomial hierarchy collapses to the third level. Finally, we present an O(3(n) . f(n))-time algorithm to find a spanning tree where the leaf set has a property that can be decided in f (n) time and has minimum or maximum size. KW - independency tree KW - cliquy tree KW - parameterized complexity KW - Kernelization KW - algorithms KW - exact algorithms Y1 - 2018 U6 - https://doi.org/10.1016/j.dam.2018.08.011 SN - 0166-218X SN - 1872-6771 VL - 272 SP - 2 EP - 15 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Hofmann, Alexander J. L. A1 - Züfle, Simon A1 - Shimizu, Kohei A1 - Schmid, Markus A1 - Wessels, Vivien A1 - Jäger, Lars A1 - Altazin, Stephane A1 - Ikegami, Keitaro A1 - Khan, Motiur Rahman A1 - Neher, Dieter A1 - Ishii, Hisao A1 - Ruhstaller, Beat A1 - Brütting, Wolfgang T1 - Dipolar Doping of Organic Semiconductors to Enhance Carrier Injection JF - Physical review applied N2 - If not oriented perfectly isotropically, the strong dipole moment of polar organic semiconductor materials such as tris-(8-hydroxyquinolate)aluminum (Alq3) will lead to the buildup of a giant surface potential (GSP) and thus to a macroscopic dielectric polarization of the organic film. Despite this having been a known fact for years, the implications of such high potentials within an organic layer stack have only been studied recently. In this work, the influence of the GSP on hole injection into organic layers is investigated. Therefore, we apply a concept called dipolar doping to devices consisting of the prototypical organic materials N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) as nonpolar host and Alq3 as dipolar dopant with different mixing ratios to tune the GSP. The mixtures are investigated in single-layer monopolar devices as well as bilayer metal/insulator/semiconductor structures. Characterization is done electrically using current-voltage (I-V) characteristics, impedance spectroscopy, and charge extraction by linearly increasing voltage and time of flight, as well as with ultraviolet photoelectron spectroscopy. We find a maximum in device performance for moderate to low doping concentrations of the polar species in the host. The observed behavior can be described on the basis of the Schottky effect for image-force barrier lowering, if the changes in the interface dipole, the carrier mobility, and the GSP induced by dipolar doping are taken into account. KW - Carrier dynamics KW - Electric polarization KW - Optoelectronics KW - Organic electronics KW - Doped semiconductors KW - Interfaces KW - Organic LEDs KW - Organic semiconductors Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevApplied.12.064052 SN - 2331-7019 VL - 12 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Meyer, Sebastian T. A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Hertzog, Lionel A1 - Hillebrand, Helmut A1 - Milcu, Alexandru A1 - Pompe, Sven A1 - Abbas, Maike A1 - Bessler, Holger A1 - Buchmann, Nina A1 - De Luca, Enrica A1 - Engels, Christof A1 - Fischer, Markus A1 - Gleixner, Gerd A1 - Hudewenz, Anika A1 - Klein, Alexandra-Maria A1 - de Kroon, Hans A1 - Leimer, Sophia A1 - Loranger, Hannah A1 - Mommer, Liesje A1 - Oelmann, Yvonne A1 - Ravenek, Janneke M. A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Staudler, Andrea A1 - Strecker, Tanja A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Vogel, Anja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity JF - Ecosphere : the magazine of the International Ecology University KW - biodiversity ecosystem functioning (BEF) KW - ecosystem processes KW - grassland KW - mechanism KW - plant productivity KW - plant species richness KW - temporal effects KW - trophic interactions Y1 - 2016 U6 - https://doi.org/10.1002/ecs2.1619 SN - 2150-8925 VL - 7 PB - Wiley-Blackwell CY - Hoboken ER -