TY - JOUR A1 - Seehafer, Norbert A1 - Gellert, Marcus A1 - Kuzanyan, Kirill M. A1 - Pipin, V. V. T1 - Helicity and the solar dynamo Y1 - 2003 ER - TY - JOUR A1 - Feudel, Fred A1 - Tuckerman, L. S. A1 - Gellert, Marcus A1 - Seehafer, Norbert T1 - Bifurcations of rotating waves in rotating spherical shell convection JF - Physical Review E N2 - The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Benard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered. KW - nonsymmetric linear-systems KW - thermal-convection KW - fluid shells KW - hopf-bifurcation KW - onset KW - magnetoconvection KW - number KW - flow Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.92.053015 SN - 1539-3755 SN - 1550-2376 VL - 92 IS - 5 PB - American Physical Society CY - Woodbury ER - TY - JOUR A1 - Feudel, Fred A1 - Gellert, Marcus A1 - RĂ¼diger, Sten A1 - Witt, Annette A1 - Seehafer, Norbert T1 - Dynamo effect in a driven helical flow Y1 - 2003 UR - http://link.aps.org/abstract/PRE/v68/e046302 ER - TY - JOUR A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Tuckerman, Laurette S. A1 - Gellert, Marcus T1 - Multistability in rotating spherical shell convection JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modulated rotating waves (MRWs) which are classified by their spatiotemporal symmetry. The generation of a third frequency for some of the MRWs is accompanied by a further loss of symmetry. Eventually a variety of MRWs, three-frequency solutions, and chaotic saddles and attractors control the dynamics for higher Rayleigh numbers. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevE.87.023021 SN - 1539-3755 VL - 87 IS - 2 PB - American Physical Society CY - College Park ER -