TY - JOUR A1 - Feudel, Fred A1 - Witt, Annette A1 - Gellert, Marcus A1 - Kurths, Jürgen A1 - Grebogi, Celso A1 - Sanjuan, Miguel Angel Fernandez T1 - Intersections of stable and unstable manifolds : the skeleton of Lagrangian chaos N2 - We study Hamiltonian chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid flow and describe the complex structure formed in a chaotic layer that separates a vortex region from the shear flow. The stable and unstable manifolds of unstable periodic orbits are computed. It is shown that their intersections in the Poincare map as an invariant set of homoclinic points constitute the backbone of the chaotic layer. Special attention is paid to the finite time properties of the chaotic layer. In particular, finite time Lyapunov exponents are computed and a scaling law of the variance of their distribution is derived. Additionally, the box counting dimension as an effective dimension to characterize the fractal properties of the layer is estimated for different duration times of simulation. Its behavior in the asymptotic time limit is discussed. By computing the Lyapunov exponents and by applying methods of symbolic dynamics, the formation of the layer as a function of the external forcing strength, which in turn represents the perturbation of the originally integrable system, is characterized. In particular, it is shown that the capture of KAM tori by the layer has a remarkable influence on the averaged Lyapunov exponents. (C) 2004 Elsevier Ltd. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Feudel, Fred A1 - Bergemann, Kay A1 - Tuckerman, Laurette S. A1 - Egbers, C. A1 - Futterer, B. A1 - Gellert, Marcus A1 - Hollerbach, Rainer T1 - Convection patterns in a spherical fluid shell JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Symmetry-breaking bifurcations have been studied for convection in a nonrotating spherical shell whose outer radius is twice the inner radius, under the influence of an externally applied central force field with a radial dependence proportional to 1/r(5). This work is motivated by the GeoFlow experiment, which is performed under microgravity condition at the International Space Station where this particular central force can be generated. In order to predict the observable patterns, simulations together with path-following techniques and stability computations have been applied. Branches of axisymmetric, octahedral, and seven-cell solutions have been traced. The bifurcations producing them have been identified and their stability ranges determined. At higher Rayleigh numbers, time-periodic states with a complex spatiotemporal symmetry are found, which we call breathing patterns. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevE.83.046304 SN - 1539-3755 VL - 83 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Seehafer, Norbert A1 - Gellert, Marcus A1 - Kuzanyan, Kirill M. A1 - Pipin, V. V. T1 - Helicity and the solar dynamo Y1 - 2003 ER - TY - JOUR A1 - Feudel, Fred A1 - Tuckerman, L. S. A1 - Gellert, Marcus A1 - Seehafer, Norbert T1 - Bifurcations of rotating waves in rotating spherical shell convection JF - Physical Review E N2 - The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Benard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered. KW - nonsymmetric linear-systems KW - thermal-convection KW - fluid shells KW - hopf-bifurcation KW - onset KW - magnetoconvection KW - number KW - flow Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.92.053015 SN - 1539-3755 SN - 1550-2376 VL - 92 IS - 5 PB - American Physical Society CY - Woodbury ER - TY - JOUR A1 - Feudel, Fred A1 - Gellert, Marcus A1 - Rüdiger, Sten A1 - Witt, Annette A1 - Seehafer, Norbert T1 - Dynamo effect in a driven helical flow Y1 - 2003 UR - http://link.aps.org/abstract/PRE/v68/e046302 ER - TY - THES A1 - Gellert, Marcus T1 - Zum Dynamoeffekt in extern getriebenen Strömungen N2 - Die Frage nach der Herkunft und der dynamischen Entwicklung langlebiger kosmischer Magnetfelder ist in vielen Details noch unbeantwortet. Es besteht zwar kein Zweifel daran, dass das Magnetfeld der Erde und anderer kosmischer Objekte durch den sogenannten Dynamoeffekt verursacht werden, der genaue Mechanismus als auch die notwendigen Voraussetzungen und Randbedingungen der zugrundeliegenden Strömungen sind aber weitgehend unbekannt. Die für einen Dynamo interessanten Strömungsmuster, die im Inneren von Himmelskörpern durch Konvektion und differentielle Rotation entstehen, sind Konvektionsrollen parallel zur Rotationsachse. Auf einer Strömung mit eben solcher Geometrie, der sogenannten Roberts-Strömung, basieren die in der vorliegenden Arbeit untersuchten Dynamomodelle. Mit Methoden der nichtlinearen Dynamik wird versucht, das Systemverhalten bei Änderung der Systemparamter genauer zu charakterisieren. Die numerischen Untersuchungen beginnen mit einer Analyse der Dynamoaktivität der Roberts-Strömung in Abhängigkeit von den zwei freien Parametern in den Modellgleichungen, der magnetischen Prandtl-Zahl und der Stärke des Energieinputs. Gefunden werden verschiedene Lösungstypen die von einem stationären Magnetfeld über periodische bis zu chaotischen Zuständen reichen. Die yugrundeliegenden Symmetrien werden beschrieben und die Bifurkationen, die zum Wechsel der Lösungstypen führen, charakterisiert. Zusätzlich gibt es Bereiche bei sehr kleinen Prandtl-Zahlen, in denen überhaupt kein Dynamo existiert. Dieses Verhalten wird in der Literatur auch für viele andere numerisch ausgewertete Modelle beschrieben. Im Übergangsbereich zwischen dynamoaktivem und dynamoinaktivem Bereich wird das Auftreten einer sogenannten Blowout-Bifurkation gefunden. Desweiteren beschäftigt sich die Arbeit mit der Frage, inwiefern Helizität, also eine schraubenförmige Bewegung, der Strömung den Dynamoeffekt beeinflusst. Dazu werden ähnliche Strömungstypen verglichen, die sich hauptsächlich in ihrem Helizitätswert unterscheiden. Es wird gefunden, dass ein bestimmter Wert der Helizität nicht unterschritten werden darf, um einen stabilen Roberts-Dynamo zu erhalten. N2 - The question of origin and development of longlasting cosmic magnetic fields is in many details an unanswered question. There is no doubt that the magnetic fields of cosmic objects like the earth, the sun and larger structures are caused by the so called dynamo effect. The exact mechanism as well as the necassary properties and boundary conditions for the underlying flow field are mostly unknown. The flow pattern believed to act as the source of dynamo activity in the inner of cosmic bodies are convection-like rolls parallel to the rotation axis of this objects and are results of the acting body forces due to differential rotation and thermal convection. The basis of the considered dynamo model is a flow field revealing such flow structures, the so called Roberts flow. The numerical investigations start with an analysis of dynamo activity of the Roberts flow in dependence on the two free parameters magnetic Prandtl number and forcing strength. The model shows different types of solutions starting from steady magnetic states in a very small parameter region at larger magnetic Prandtl numbers, time-periodic solutions and chaotic behavior for stronger forcing. For small magnetic Prandtl numbers the system doesn't carry any magnetic field. This 'small Prandtl number problem' is in accordance with the behavior of several other numerically investigated dynamo models described in the literature. The transient region between dynamo activity and the non-magnetic states can be classified by a so-called blowout bifurcation. Furthermore the investigation deals with the question in what way the helical structure of the flow field indicated by a non-vanishing kinetic helicity influences the dynamo process. The comparison of very similar flow families, mainly distinguishable by their different helicity values, leads to the result that beneath a lower bound no stable Roberts dynamo is working. T2 - Zum Dynamoeffekt in extern getriebenen Strömungen KW - Dynamo KW - Dynamoeffekt KW - Magnetfelderzeugung KW - Roberts-Strömung KW - Helizität KW - dynamo KW - dynamo effect KW - magnetic field generation KW - Roberts flow KW - helicity Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001705 ER - TY - JOUR A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Tuckerman, Laurette S. A1 - Gellert, Marcus T1 - Multistability in rotating spherical shell convection JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modulated rotating waves (MRWs) which are classified by their spatiotemporal symmetry. The generation of a third frequency for some of the MRWs is accompanied by a further loss of symmetry. Eventually a variety of MRWs, three-frequency solutions, and chaotic saddles and attractors control the dynamics for higher Rayleigh numbers. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevE.87.023021 SN - 1539-3755 VL - 87 IS - 2 PB - American Physical Society CY - College Park ER -