TY - JOUR A1 - Utecht, Manuel Martin A1 - Pan, Tianluo A1 - Klamroth, Tillmann A1 - Palmer, Richard E. T1 - Quantum chemical cluster models for chemi- and physisorption of chlorobenzene on Si(111)-7x7 JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Motivated by recent atomic manipulation experiments, we report quantum chemical calculations for chemi- and physisorption minima of chlorobenzene on the Si(111)-7x7 surface. A density functional theory cluster approach is applied, using the B3LYP hybrid functional alongside Grimme's empirical dispersion corrections (D3). We were able to identify chemisorption sites of binding energies of 1.6 eV and physisorption energies of 0.6 eV, both in encouraging agreement with the trend of experimental data. The cluster approach opens up the possibility of a first-principles based dynamical description of STM manipulation experiments on this system, the interpretation of which involves both the chemi- and physisorbed states. However, we found that special care has to be taken regarding the choice of clusters, basis sets, and the evaluation of the dispersion corrections. Y1 - 2014 U6 - https://doi.org/10.1021/jp504208d SN - 1089-5639 VL - 118 IS - 33 SP - 6699 EP - 6704 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Palmer, Richard E. A1 - Klamroth, Tillmann T1 - Quantum chemical approach to atomic manipulation of chlorobenzene on the Si(111)-7 x 7 surface BT - Resonance localization, vibrational activation, and surface dynamics JF - Physical review materials N2 - We present a cluster model to describe the localization of hot charge carriers on the Si(111)-7 x 7 surface, which leads to (nonlocal) desorption of chlorobenzene molecules in scanning tunneling microscope (STM) manipulation experiments. The localized charge carriers are modeled by a small cluster. By means of quantum chemical calculations, this cluster model explains many experimental findings from STM manipulation. We show that the negative charge is mainly localized in the surface, while the positive one also resides on the molecule. Both resonances boost desorption: In the negative resonance the adatom is elevated; in the positive one the chemisorption bond between the silicon surface adatom and chlorobenzene is broken. We find normal modes promoting desorption matching experimental low-temperature activation energies for electron-and hole-induced desorption. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevMaterials.1.026001 SN - 2475-9953 VL - 1 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp22793a SN - 1463-9076 VL - 13 IS - 48 SP - 21608 EP - 21614 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann T1 - Local resonances in STM manipulation of chlorobenzene on Si(111)-7x7 BT - performance of different cluster models and density functionals JF - Molecular physics N2 - Hot localised charge carriers on the Si(111)-7x7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. [GRAPHICS] . KW - DFT KW - cluster model KW - charge localisation KW - STM Y1 - 2018 U6 - https://doi.org/10.1080/00268976.2018.1442939 SN - 0026-8976 SN - 1362-3028 VL - 116 IS - 13 SP - 1687 EP - 1696 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Gaebel, Tina A1 - Klamroth, Tillmann T1 - Desorption induced by low energy charge carriers on Si(111)-7 x 7 BT - first principles molecular dynamics for benzene derivates JF - Journal of computational chemistry : organic, inorganic, physical, biological N2 - We use clusters for the modeling of local ion resonances caused by low energy charge carriers in STM-induced desorption of benzene derivates from Si(111)-7 x 7. We perform Born-Oppenheimer molecular dynamics for the charged systems assuming vertical transitions to the charged states at zero temperature, to rationalize the low temperature activation energies, which are found in experiment for chlorobenzene. Our calculations suggest very similar low temperature activation energies for toluene and benzene. For the cationic resonance transitions to physisorption are found even at 0 K, while the anion remains chemisorbed during the propagations. Further, we also extend our previous static quantum chemical investigations to toluene and benzene. In addition, an in depth analysis of the ionization potentials and electron affinities, which are used to estimate resonance energies, is given. KW - Born-Oppenheimer MD KW - STM-induced reactions KW - cluster models KW - Si(111)-7x7 Y1 - 2018 U6 - https://doi.org/10.1002/jcc.25607 SN - 0192-8651 SN - 1096-987X VL - 39 IS - 30 SP - 2517 EP - 2525 PB - Wiley CY - Hoboken ER - TY - THES A1 - Utecht, Manuel Martin T1 - Zur Optimierung und dem Auslesen molekularer Schalter BT - quantenchemische Untersuchungen an vier Beispielen Y1 - 2015 ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp03093e SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 27 SP - 18079 EP - 18086 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10−18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp03093e SN - 1463-9076 SN - 1463-9084 VL - 27 IS - 17 SP - 18079 EP - 18086 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Hebert, Andreas A1 - Rück-Braun, Karola A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Reversible Photoswitching of the Interfacial Nonlinear Optical Response JF - The journal of physical chemistry letters N2 - Incorporating photochromic molecules into organic/inorganic hybrid materials may lead to photoresponsive systems. In such systems, the second-order nonlinear properties can be controlled via external stimulation with light at an appropriate wavelength. By creating photochromic molecular switches containing self-assembled monolayers on Si(111), we can demonstrate efficient reversible switching, which is accompanied by a pronounced modulation of the nonlinear optical (NLO) response of the system. The concept of utilizing functionalized photoswitchable Si surfaces could be a way for the generation of two-dimensional NLO switching materials, which are promising for applications in photonic and optoelectronic devices. Y1 - 2015 U6 - https://doi.org/10.1021/jz502477m SN - 1948-7185 VL - 6 IS - 3 SP - 505 EP - 509 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Maass, Friedrich A1 - Utecht, Manuel Martin A1 - Stremlau, Stephan A1 - Gille, Marie A1 - Schwarz, Jutta A1 - Hecht, Stefan A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons JF - Physical review : B, Condensed matter and materials physics N2 - Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized pi-electron system. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.045434 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER -