TY - JOUR A1 - Kaiser, M. A1 - Ellerbrock, Ruth H. A1 - Wulf, M. A1 - Dultz, S. A1 - Hierath, C. A1 - Sommer, M. T1 - The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use JF - Journal of geophysical research : Biogeosciences N2 - In this study, we analyzed the influence of soil mineral characteristics (e. g., clay concentration and mineralogical composition, iron and aluminum oxide concentration and crystallinity, specific surface area, and exchangeable cation concentration) on (i) organic carbon (OC) content (kg m(-2)) and (ii) the concentration (g kg(-1)), composition, and stability of the mineral-associated organic matter (OM) of arable and forest topsoils. We selected seven soil types with different mineral characteristics for this study. For each soil type, samples were taken from topsoils of a deciduous forest and an adjacent arable site. The arable and forest sites have been used continuously for more than 100 years. Na-pyrophosphate soluble OM fractions (OM(PY)), representing mineral-associated OM, were extracted, analyzed for OC and C-14 concentrations, and characterized by FTIR spectroscopy. For the forest and arable topsoils, a linear relationship was found between the OC content and exchangeable Ca. For the arable topsoils (pH 6.7-7.5), correlation analyses indicated that the OCPY concentration increased with an increase in oxalate soluble Fe and Al, exchangeable Ca, and Na-pyrophosphate soluble Mg and Fe concentrations. The stability of OM(PY) determined by the C-14 measurements of the near-neutral arable topsoils was shown to increase with the specific surface area and the concentration of exchangeable Ca. For the acidic forest topsoils (pH < 5), the stability of OM(PY) was found to increase as the pH, and the concentration of C=O groups and Na-pyrophosphate soluble Mg increase. Y1 - 2012 U6 - https://doi.org/10.1029/2011JG001712 SN - 0148-0227 VL - 117 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Pohl, M. A1 - Hoffmann, M. A1 - Hagemann, U. A1 - Giebels, M. A1 - Borraz, Elisa Albiac A1 - Sommer, Michael A1 - Augustin, Jürgen T1 - Dynamic C and N stocks - key factors controlling the C gas exchange of maize in heterogenous peatland JF - Biogeosciences N2 - The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - R-eco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m(-2)); (b) Mollic Gleysol (GL; 38 kg C m(-2)); and (c) Hemic Histosol (HS; 87 kg C m(-2)). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (N-dyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 +/- 30 g C m(-2) yr(-1) in AR to -305 +/- 123 g C m(-2) yr(-1) in GL and -127 +/- 212 g C m(-2) yr(-1) in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and N-dyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : R-eco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and transformation processes in the plant-soil system, which promote CO2 input via GPP more than CO2 emission via R-eco. The process-oriented approach of dynamic C and N stocks is a promising, potentially generalisable method for system-oriented investigations of the C gas exchange of groundwater-influenced soils and could be expanded to other nutrients and soil characteristics. However, in order to assess the climate impact of arable sites on drained peatlands, it is always necessary to consider the entire range of groundwater-influenced mineral and organic soils and their respective areal extent within the soil landscape. Y1 - 2015 U6 - https://doi.org/10.5194/bg-12-2737-2015 SN - 1726-4170 SN - 1726-4189 VL - 12 IS - 9 SP - 2737 EP - 2752 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Pohl, Madlen A1 - Hoffmann, M. A1 - Hagemann, Ulrike A1 - Giebels, M. A1 - Albiac Borraz, E. A1 - Sommer, Michael A1 - Augustin, Jürgen T1 - Dynamic C and N stocks BT - key factors controlling the C gas exchange of maize in heterogenous peatland T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - R-eco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m(-2)); (b) Mollic Gleysol (GL; 38 kg C m(-2)); and (c) Hemic Histosol (HS; 87 kg C m(-2)). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (N-dyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 +/- 30 g C m(-2) yr(-1) in AR to -305 +/- 123 g C m(-2) yr(-1) in GL and -127 +/- 212 g C m(-2) yr(-1) in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and N-dyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : R-eco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and transformation processes in the plant-soil system, which promote CO2 input via GPP more than CO2 emission via R-eco. The process-oriented approach of dynamic C and N stocks is a promising, potentially generalisable method for system-oriented investigations of the C gas exchange of groundwater-influenced soils and could be expanded to other nutrients and soil characteristics. However, in order to assess the climate impact of arable sites on drained peatlands, it is always necessary to consider the entire range of groundwater-influenced mineral and organic soils and their respective areal extent within the soil landscape. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 496 KW - soil organic-matter KW - Zea-mays L. KW - term management impacts KW - carbon-dioxide exchange KW - net ecosystem exchange KW - nitrogen-fertilization KW - water-table KW - northeast germany KW - CO2 fluxes KW - mineral fertilization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408184 SN - 1866-8372 IS - 496 ER - TY - GEN A1 - Garbusow, Maria A1 - Nebe, Stephan A1 - Sommer, Christian A1 - Kuitunen-Paul, Sören A1 - Sebold, Miriam A1 - Schad, Daniel A1 - Friedel, Eva A1 - Veer, Ilya M. A1 - Wittchen, Hans-Ulrich A1 - Rapp, Michael A. A1 - Ripke, Stephan A1 - Walter, Henrik A1 - Huys, Quentin J. M. A1 - Schlagenhauf, Florian A1 - Smolka, Michael N. A1 - Heinz, Andreas T1 - Pavlovian-To-Instrumental Transfer and Alcohol Consumption in Young Male Social Drinkers BT - Behavioral, Neural and Polygenic Correlates T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - In animals and humans, behavior can be influenced by irrelevant stimuli, a phenomenon called Pavlovian-to-instrumental transfer (PIT). In subjects with substance use disorder, PIT is even enhanced with functional activation in the nucleus accumbens (NAcc) and amygdala. While we observed enhanced behavioral and neural PIT effects in alcohol-dependent subjects, we here aimed to determine whether behavioral PIT is enhanced in young men with high-risk compared to low-risk drinking and subsequently related functional activation in an a-priori region of interest encompassing the NAcc and amygdala and related to polygenic risk for alcohol consumption. A representative sample of 18-year old men (n = 1937) was contacted: 445 were screened, 209 assessed: resulting in 191 valid behavioral, 139 imaging and 157 genetic datasets. None of the subjects fulfilled criteria for alcohol dependence according to the Diagnostic and Statistical Manual of Mental Disorders-IV-TextRevision (DSM-IV-TR). We measured how instrumental responding for rewards was influenced by background Pavlovian conditioned stimuli predicting action-independent rewards and losses. Behavioral PIT was enhanced in high-compared to low-risk drinkers (b = 0.09, SE = 0.03, z = 2.7, p < 0.009). Across all subjects, we observed PIT-related neural blood oxygen level-dependent (BOLD) signal in the right amygdala (t = 3.25, p(SVC) = 0.04, x = 26, y = -6, z = -12), but not in NAcc. The strength of the behavioral PIT effect was positively correlated with polygenic risk for alcohol consumption (r(s) = 0.17, p = 0.032). We conclude that behavioral PIT and polygenic risk for alcohol consumption might be a biomarker for a subclinical phenotype of risky alcohol consumption, even if no drug-related stimulus is present. The association between behavioral PIT effects and the amygdala might point to habitual processes related to out PIT task. In non-dependent young social drinkers, the amygdala rather than the NAcc is activated during PIT; possible different involvement in association with disease trajectory should be investigated in future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 841 KW - Pavlovian-to-instrumental transfer KW - amygdala KW - alcohol KW - polygenic risk KW - high risk drinkers Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473280 SN - 1866-8364 IS - 841 ER - TY - JOUR A1 - Garbusow, Maria A1 - Nebe, Stephan A1 - Sommer, Christian A1 - Kuitunen-Paul, Sören A1 - Sebold, Miriam A1 - Schad, Daniel A1 - Friedel, Eva A1 - Veer, Ilya M. A1 - Wittchen, Hans-Ulrich A1 - Rapp, Michael A. A1 - Ripke, Stephan A1 - Walter, Henrik A1 - Huys, Quentin J. M. A1 - Schlagenhauf, Florian A1 - Smolka, Michael N. A1 - Heinz, Andreas T1 - Pavlovian-To-Instrumental Transfer and Alcohol Consumption in Young Male Social Drinkers BT - Behavioral, Neural and Polygenic Correlates JF - Journal of Clinical Medicine N2 - In animals and humans, behavior can be influenced by irrelevant stimuli, a phenomenon called Pavlovian-to-instrumental transfer (PIT). In subjects with substance use disorder, PIT is even enhanced with functional activation in the nucleus accumbens (NAcc) and amygdala. While we observed enhanced behavioral and neural PIT effects in alcohol-dependent subjects, we here aimed to determine whether behavioral PIT is enhanced in young men with high-risk compared to low-risk drinking and subsequently related functional activation in an a-priori region of interest encompassing the NAcc and amygdala and related to polygenic risk for alcohol consumption. A representative sample of 18-year old men (n = 1937) was contacted: 445 were screened, 209 assessed: resulting in 191 valid behavioral, 139 imaging and 157 genetic datasets. None of the subjects fulfilled criteria for alcohol dependence according to the Diagnostic and Statistical Manual of Mental Disorders-IV-TextRevision (DSM-IV-TR). We measured how instrumental responding for rewards was influenced by background Pavlovian conditioned stimuli predicting action-independent rewards and losses. Behavioral PIT was enhanced in high-compared to low-risk drinkers (b = 0.09, SE = 0.03, z = 2.7, p < 0.009). Across all subjects, we observed PIT-related neural blood oxygen level-dependent (BOLD) signal in the right amygdala (t = 3.25, p(SVC) = 0.04, x = 26, y = -6, z = -12), but not in NAcc. The strength of the behavioral PIT effect was positively correlated with polygenic risk for alcohol consumption (r(s) = 0.17, p = 0.032). We conclude that behavioral PIT and polygenic risk for alcohol consumption might be a biomarker for a subclinical phenotype of risky alcohol consumption, even if no drug-related stimulus is present. The association between behavioral PIT effects and the amygdala might point to habitual processes related to out PIT task. In non-dependent young social drinkers, the amygdala rather than the NAcc is activated during PIT; possible different involvement in association with disease trajectory should be investigated in future studies. KW - Pavlovian-to-instrumental transfer KW - amygdala KW - alcohol KW - polygenic risk KW - high risk drinkers Y1 - 2019 U6 - https://doi.org/10.3390/jcm8081188 SN - 2077-0383 VL - 8 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Garbusow, Maria A1 - Schad, Daniel A1 - Sebold, Miriam A1 - Friedel, Eva A1 - Bernhardt, Nadine A1 - Koch, Stefan P. A1 - Steinacher, Bruno A1 - Kathmann, Norbert A1 - Geurts, Dirk E. M. A1 - Sommer, Christian A1 - Mueller, Dirk K. A1 - Nebe, Stephan A1 - Paul, Soeren A1 - Wittchen, Hans-Ulrich A1 - Zimmermann, Ulrich S. A1 - Walter, Henrik A1 - Smolka, Michael N. A1 - Sterzer, Philipp A1 - Rapp, Michael A. A1 - Huys, Quentin J. M. A1 - Schlagenhauf, Florian A1 - Heinz, Andreas T1 - Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence JF - Addiction biology N2 - In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n=31 detoxified patients diagnosed with alcohol dependence and n=24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. KW - human Pavlovian-to-instrumental transfer KW - nucleus accumbens KW - relapse in alcohol use disorder Y1 - 2016 U6 - https://doi.org/10.1111/adb.12243 SN - 1355-6215 SN - 1369-1600 VL - 21 SP - 719 EP - 731 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - van der Meij, Marijn W. A1 - Temme, Arnaud J. A. M. A1 - Lin, H. S. A1 - Gerke, Horst H. A1 - Sommer, Michael T1 - On the role of hydrologic processes in soil and landscape evolution modeling BT - concepts, complications and partial solutions JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - The ability of water to transport and transform soil materials is one of the main drivers of soil and landscape development. In turn, soil and landscape properties determine how water is distributed in soil landscapes. Understanding the complex dynamics of this co-evolution of soils, landscapes and the hydrological system is fundamental in adapting land management to changes in climate. Soil-Landscape Evolution Models (SLEMs) are used to simulate the development and evolution of soils and landscapes. However, many hydrologic processes, such as preferential flow and subsurface lateral flow, are currently absent in these models. This limits the applicability of SLEMs to improve our understanding of feedbacks in the hydro-pedo-geomorphological system. Implementation of these hydrologic processes in SLEMs faces several complications related to calculation demands, limited methods for linking pedogenic and hydrologic processes, and limited data on quantification of changes in the hydrological system over time. In this contribution, we first briefly review processes and feedbacks in soil-landscape-hydrological systems. Next, we elaborate on the development required to include these processes in SLEMs. We discuss the state-of-the-art knowledge, identify complications, give partial solutions and suggest important future development. The main requirements for incorporating hydrologic processes in SLEMs are: (1) designing a model framework that can deal with varying timescales for different sets of processes, (2) developing and implementing methods for simulating pedogenesis as a function of water flow, (3) improving and implementing knowledge on the evolution and dynamics of soil hydraulic properties over different timescales, and (4) improving the database on temporal changes and dynamics of flow paths. Y1 - 2018 U6 - https://doi.org/10.1016/j.earscirev.2018.09.001 SN - 0012-8252 SN - 1872-6828 VL - 185 SP - 1088 EP - 1106 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fiener, P. A1 - Wilken, F. A1 - Aldana-Jague, E. A1 - Deumlich, D. A1 - Gomez, J. A. A1 - Guzman, G. A1 - Hardy, R. A. A1 - Quinton, J. N. A1 - Sommer, M. A1 - Van Oost, K. A1 - Wexler, R. T1 - Uncertainties in assessing tillage erosion BT - how appropriate are our measuring techniques? JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 x 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 039 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = -26 +/- 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost optimal conditions, are subject to major uncertainties that are far from negligible. (C) 2018 Elsevier B.V. All rights reserved. KW - Tillage erosion KW - Tracer KW - UAS KW - TLS KW - Method comparison KW - Measurement uncertainty Y1 - 2018 U6 - https://doi.org/10.1016/j.geomorph.2017.12.031 SN - 0169-555X SN - 1872-695X VL - 304 SP - 214 EP - 225 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muhl, Rika M. W. A1 - Roelke, Daniel L. A1 - Zohary, Tamar A1 - Moustaka-Gouni, Maria A1 - Sommer, Ulrich A1 - Borics, Gabor A1 - Gaedke, Ursula A1 - Withrow, Frances G. A1 - Bhattacharyya, Joydeb T1 - Resisting annihilation BT - relationships between functional trait dissimilarity, assemblage competitive power and allelopathy JF - Ecology letters N2 - Allelopathic species can alter biodiversity. Using simulated assemblages that are characterised by neutrality, lumpy coexistence and intransitivity, we explore relationships between within-assemblage competitive dissimilarities and resistance to allelopathic species. An emergent behaviour from our models is that assemblages are more resistant to allelopathy when members strongly compete exploitatively (high competitive power). We found that neutral assemblages were the most vulnerable to allelopathic species, followed by lumpy and then by intransitive assemblages. We find support for our modeling in real-world time-series data from eight lakes of varied morphometry and trophic state. Our analysis of this data shows that a lake's history of allelopathic phytoplankton species biovolume density and dominance is related to the number of species clusters occurring in the plankton assemblages of those lakes, an emergent trend similar to that of our modeling. We suggest that an assemblage's competitive power determines its allelopathy resistance. KW - Allelopathy KW - exploitative competition KW - interference competition KW - intransitivity KW - lumpy coexistence KW - neutrality KW - species supersaturated assemblages Y1 - 2018 U6 - https://doi.org/10.1111/ele.13109 SN - 1461-023X SN - 1461-0248 VL - 21 IS - 9 SP - 1390 EP - 1400 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - van der Meij, Marijn W. A1 - Reimann, Tony A1 - Vornehm, V. K. A1 - Temme, Arnaud J. A. M. A1 - Wallinga, Jakob A1 - van Beek, Roy A1 - Sommer, Michael T1 - Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Humans have triggered or accelerated erosion processes since prehistoric times through agricultural practices. Optically stimulated luminescence (OSL) is widely used to quantify phases and rates of the corresponding landscape change, by measuring the last moment of daylight exposure of sediments. However, natural and anthropogenic mixing processes, such as bioturbation and tillage, complicate the use of OSL as grains of different depositional ages become mixed, and grains become exposed to light even long after the depositional event of interest. Instead, OSL determines the stabilization age, indicating when sediments were buried below the active mixing zone. These stabilization ages can cause systematic underestimation when calculating deposition rates. Our focus is on colluvial deposition in a kettle hole in the Uckermark region, northeastern Germany. We took 32 samples from five locations in the colluvium filling the kettle hole to study both spatial and temporal patterns in colluviation. We combined OSL dating with advanced age modelling to determine the stabilization age of colluvial sediments. These ages were combined with an archaeological reconstruction of historical ploughing depths to derive the levels of the soil surface at the moment of stabilization; the deposition depths, which were then used to calculate unbiased deposition rates. We identified two phases of colluvial deposition. The oldest deposits (similar to 5 ka) were located at the fringe of the kettle hole and accumulated relatively slowly, whereas the youngest deposits (<0.3 ka) rapidly filled the central kettle hole with rates of two orders of magnitude higher. We suggest that the latter phase is related to artificial drainage, facilitating accessibility in the central depression for agricultural practices. Our results show the need for numerical dating techniques that take archaeological and soil-geomorphological information into account to identify spatiotemporal patterns of landscape change, and to correctly interpret landscape dynamics in anthropogenically influenced hilly landscapes. (c) 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. KW - geochronology KW - OSL KW - tillage KW - erosion KW - kettle hole KW - hummocky KW - landscape evolution Y1 - 2019 U6 - https://doi.org/10.1002/esp.4671 SN - 0197-9337 SN - 1096-9837 VL - 44 IS - 12 SP - 2408 EP - 2422 PB - Wiley CY - Hoboken ER -