TY - JOUR A1 - Huss, Matthias A1 - Bookhagen, Bodo A1 - Huggel, C. A1 - Jacobsen, Dean A1 - Bradley, Raymond S. A1 - Clague, J. J. A1 - Vuille, Mathias A1 - Buytaert, Wouter A1 - Cayan, D. R. A1 - Greenwood, G. A1 - Mark, B. G. A1 - Milner, A. M. A1 - Weingartner, Rolf A1 - Winder, M. T1 - Toward mountains without permanent snow and ice JF - Earths future N2 - The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier-and moraine-dammed lakes will threaten downstream populations.Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice. Y1 - 2017 U6 - https://doi.org/10.1002/2016EF000514 SN - 2328-4277 VL - 5 SP - 418 EP - 435 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ziegenhain, Ute A1 - Jacobsen, T. A1 - Huss, M. T1 - Prepubertal suicide attempts Y1 - 1994 ER - TY - JOUR A1 - Hector, Andy A1 - Hautier, Yann A1 - Saner, Philippe A1 - Wacker, Lukas A1 - Bagchi, Robert A1 - Joshi, Jasmin Radha A1 - Scherer-Lorenzen, Michael A1 - Spehn, Eva M. A1 - Bazeley-White, Ellen A1 - Weilenmann, Markus A1 - Caldeira, Maria da Conceição Brálio de Brito A1 - Dimitrakopoulos, Panayiotis G. A1 - Finn, John A. A1 - Huss-Danell, Kerstin A1 - Jumpponen, Ari A1 - Mulder, Christa P. H. A1 - Palmborg, Cecilia A1 - Pereira, J. S. A1 - Siamantziouras, Akis S. D. A1 - Terry, Andrew C. A1 - Troumbis, Andreas Y. A1 - Schmid, Bernhard A1 - Loreau, Michel T1 - General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding N2 - Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk- spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems. Y1 - 2010 UR - http://esapubs.org/esapubs/journals/ecology.htm SN - 0012-9658 ER - TY - JOUR A1 - Levermann, Anders A1 - Bamber, Jonathan L. A1 - Drijfhout, Sybren A1 - Ganopolski, Andrey A1 - Haeberli, Winfried A1 - Harris, Neil R. P. A1 - Huss, Matthias A1 - Krueger, Kirstin A1 - Lenton, Timothy M. A1 - Lindsay, Ronald W. A1 - Notz, Dirk A1 - Wadhams, Peter A1 - Weber, Susanne T1 - Potential climatic transitions with profound impact on Europe Review of the current state of six 'tipping elements of the climate system' JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the 'tipping' potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. Y1 - 2012 U6 - https://doi.org/10.1007/s10584-011-0126-5 SN - 0165-0009 SN - 1573-1480 VL - 110 IS - 3-4 SP - 845 EP - 878 PB - Springer CY - Dordrecht ER -