TY - JOUR A1 - Letawe, G. A1 - Courbin, F. A1 - Magain, P. A1 - Hilker, M. A1 - Jablonka, P. A1 - Jahnke, Knud A1 - Wisotzki, Lutz T1 - On-axis spectroscopy of the z=0.144 radio-loud quasar HE 1434-1600 : an elliptical host with a highly ionized ISM N2 - VLT on-axis optical spectroscopy of the z = 0.144 radio-loud quasar HE 1434-1600 is presented. The spatially resolved spectra of the host galaxy are deconvolved and separated from those of the central quasar in order to study the dynamics of the stars and gas as well as the physical conditions of the ISM. We find that the host of HE 1434-1600 is an elliptical galaxy that resides in a group of at least 5 member galaxies, and that most likely experienced a recent collision with its nearest companion. Compared with other quasar host galaxies, HE 1434-1600 has a highly ionized ISM. The ionization state corresponds to that of typical Seyferts, but the ionized regions are not distributed in a homogeneous way around the QSO, and are located preferentially several kiloparsecs away from it. While the stellar absorption lines do not show any significant velocity field, the gas emission lines do. The observed gas velocity field is hard to reconcile with dynamical models involving rotating disk. modified Hubble laws or power laws, that all require extreme central masses (M > 10(9) M-circle dot) to provide only poor fit to the data. Power law models, which best fit the data, provide a total mass of M(<10 kpc) = 9.2 x 10(10) M-&ODOT;. We conclude that the recent interaction between HE 1434-1600 and its closest companion has strongly affected the gas velocity and ionization state, from the center of the galaxy to its most external parts Y1 - 2004 ER - TY - JOUR A1 - Heger, Tina A1 - Bernard-Verdier, Maud A1 - Gessler, Arthur A1 - Greenwood, Alex D. A1 - Grossart, Hans-Peter A1 - Hilker, Monika A1 - Keinath, Silvia A1 - Kowarik, Ingo A1 - Küffer, Christoph A1 - Marquard, Elisabeth A1 - Mueller, Johannes A1 - Niemeier, Stephanie A1 - Onandia, Gabriela A1 - Petermann, Jana S. A1 - Rillig, Matthias C. A1 - Rodel, Mark-Oliver A1 - Saul, Wolf-Christian A1 - Schittko, Conrad A1 - Tockner, Klement A1 - Joshi, Jasmin Radha A1 - Jeschke, Jonathan M. T1 - Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change JF - Bioscience N2 - Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders. KW - Anthropocene KW - eco-evolutionary experience KW - global change KW - novel ecosystems KW - shifting baselines Y1 - 2019 U6 - https://doi.org/10.1093/biosci/biz095 SN - 0006-3568 SN - 1525-3244 VL - 69 IS - 11 SP - 888 EP - 899 PB - Oxford Univ. Press CY - Oxford ER -