TY - JOUR A1 - Nguyen, Tam A1 - Kumar, Rohini A1 - Musolff, Andreas A1 - Lutz, Stefanie R. A1 - Sarrazin, Fanny A1 - Attinger, Sabine A1 - Fleckenstein, Jan H. T1 - Disparate Seasonal Nitrate Export From Nested Heterogeneous Subcatchments Revealed With StorAge Selection Functions JF - Water resources research N2 - Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km(2)), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternate the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices. KW - catchment nitrate export KW - StorAge Selection function KW - travel time distribution KW - mesoscale heterogeneous catchment KW - subcatchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR030797 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 3 PB - American Geophysical Union CY - Washington ER -