TY - CHAP A1 - Lobel, A. T1 - Modeling DACs in UV lines of massive hot stars N2 - We apply the 3-dimensional radiative transport codeWind3D to 3D hydrodynamic models of Corotating Interaction Regions to fit the detailed variability of Discrete Absorption Components observed in Si iv UV resonance lines of HD 64760 (B0.5 Ib). We discuss important effects of the hydrodynamic input parameters on these large-scale equatorial wind structures that determine the detailed morphology of the DACs computed with 3D transfer. The best fit model reveals that the CIR in HD 64760 is produced by a source at the base of the wind that lags behind the stellar surface rotation. The non-corotating coherent wind structure is an extended density wave produced by a local increase of only 0.6% in the smooth symmetric wind mass-loss rate. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17856 ER - TY - JOUR A1 - Bozzo, Enrico A1 - Oskinova, Lida A1 - Lobel, A. A1 - Hamann, Wolf-Rainer T1 - The super-orbital modulation of supergiant high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries. KW - X-rays: stars KW - X-rays: binaries KW - gamma rays: stars KW - stars: massive KW - stars: neutron Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731930 SN - 1432-0746 VL - 606 PB - EDP Sciences CY - Les Ulis ER -