TY - JOUR A1 - Schifferle, Lukas A1 - Lobanov, Sergey S. T1 - Evolution of chemical bonding and spin-pairing energy in ferropericlase across Its spin transition JF - ACS Earth and Space Chemistry N2 - The evolution of chemical bonding in ferropericlase, (Mg,Fe)O, with pressure may affect the physical and chemical properties of the Earth's lower mantle. Here, we report high-pressure optical absorption spectra of single-crystalline ferropericlase ((Mg0.87Fe0.13)O) up to 135 GPa. Combined with a re-evaluation of published partial fluorescence yield X-ray absorption spectroscopy data, we show that the covalency of the Fe-O bond increases with pressure, but the iron spin transition at 57-76.5 GPa reverses this trend. The qualitative crossover in chemical bonding suggests that the spin-pairing transition weakens the Fe-O bond in ferropericlase. We find, that the spin transition in ferropericlase is caused by both the increase of the ligand field-splitting energy and the decrease in the spin-pairing energy of high-spin Fe2+. KW - high-pressure KW - diamond anvil cell KW - covalency KW - bond strength KW - iron KW - spin KW - transition Y1 - 2022 U6 - https://doi.org/10.1021/acsearthspacechem.2c00014 SN - 2472-3452 VL - 6 IS - 3 SP - 788 EP - 799 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Armstrong, Michael R. A1 - Radousky, Harry B. A1 - Austin, Ryan A. A1 - Tschauner, Oliver A1 - Brown, Shaughnessy A1 - Gleason, Arianna E. A1 - Goldman, Nir A1 - Granados, Eduardo A1 - Grivickas, Paulius A1 - Holtgrewe, Nicholas A1 - Kroonblawd, Matthew P. A1 - Lee, Hae Ja A1 - Lobanov, Sergey A1 - Nagler, Bob A1 - Nam, Inhyuk A1 - Prakapenka, Vitali A1 - Prescher, Clemens A1 - Reed, Evan J. A1 - Stavrou, Elissaios A1 - Walter, Peter A1 - Goncharov, Alexander F. A1 - Belof, Jonathan L. T1 - Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction JF - Journal of applied physics N2 - The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of & SIM;80 GPa. Ultrafast x-ray diffraction using & SIM;100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events. Published by AIP Publishing. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085297 SN - 0021-8979 SN - 1089-7550 VL - 132 IS - 5 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Blanchard, Ingrid A1 - Petitgirard, Sylvain A1 - Laurenz, Vera A1 - Miyajima, Nobuyoshi A1 - Wilke, Max A1 - Rubie, David C. A1 - Lobanov, Sergey S. A1 - Hennet, Louis A1 - Morgenroth, Wolfgang A1 - Tucoulou, RĂ©mi A1 - Bonino, Valentina A1 - Zhao, Xuchao A1 - Franchi, Ian T1 - Chemical analysis of trace elements at the nanoscale in samples recovered from laser-heated diamond anvil cell experiments JF - Physics and chemistry of minerals N2 - High pressure and high temperature experiments performed with laser-heated diamond anvil cells (LH-DAC) are being extensively used in geosciences to study matter at conditions prevailing in planetary interiors. Due to the size of the apparatus itself, the samples that are produced are extremely small, on the order of few tens of micrometers. There are several ways to analyze the samples and extract physical, chemical or structural information, using either in situ or ex situ methods. In this paper, we compare two nanoprobe techniques, namely nano-XRF and NanoSIMS, that can be used to analyze recovered samples synthetized in a LH-DAC. With these techniques, it is possible to extract the spatial distribution of chemical elements in the samples. We show the results for several standards and discuss the importance of proper calibration for the acquisition of quantifiable results. We used these two nanoprobe techniques to retrieve elemental ratios of dilute species (few tens of ppm) in quenched experimental molten samples relevant for the formation of the iron-rich core of the Earth. We finally discuss the applications of such probes to constrain the partitioning of trace elements between metal and silicate phases, with a focus on moderately siderophile elements, tungsten and molybdenum. KW - NanoSIMS KW - Nano-XRF KW - Diamond anvil cell KW - Focused ion beam Y1 - 2022 U6 - https://doi.org/10.1007/s00269-022-01193-7 SN - 0342-1791 SN - 1432-2021 VL - 49 IS - 6 PB - Springer CY - New York ER -