TY - JOUR A1 - Liu, Junzhong A1 - Feng, Lili A1 - Gu, Xueting A1 - Deng, Xian A1 - Qiu, Qi A1 - Li, Qun A1 - Zhang, Yingying A1 - Wang, Muyang A1 - Deng, Yiwen A1 - Wang, Ertao A1 - He, Yuke A1 - Bäurle, Isabel A1 - Li, Jianming A1 - Cao, Xiaofeng A1 - He, Zuhua T1 - An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis JF - Cell research N2 - Global warming has profound effects on plant growth and fitness. Plants have evolved sophisticated epigenetic machinery to respond quickly to heat, and exhibit transgenerational memory of the heat-induced release of post-transcriptional gene silencing (PTGS). However, how thermomemory is transmitted to progeny and the physiological relevance are elusive. Here we show that heat-induced HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2) directly activates the H3K27me3 demethylase RELATIVE OF EARLY FLOWERING 6 (REF6), which in turn derepresses HSFA2. REF6 and HSFA2 establish a heritable feedback loop, and activate an E3 ubiquitin ligase, SUPPRESSOR OF GENE SILENCING 3 (SGS3)-INTERACTING PROTEIN 1 (SGIP1). SGIP1-mediated SGS3 degradation leads to inhibited biosynthesis of trans-acting siRNA (tasiRNA). The REF6-HSFA2 loop and reduced tasiRNA converge to release HEAT-INDUCED TAS1 TARGET 5 (HTT5), which drives early flowering but attenuates immunity. Thus, heat induces transmitted phenotypes via a coordinated epigenetic network involving histone demethylases, transcription factors, and tasiRNAs, ensuring reproductive success and transgenerational stress adaptation. KW - Chromatin KW - Epigenetic memory KW - Epigenetics KW - Innate immunity KW - Plant signalling Y1 - 2019 U6 - https://doi.org/10.1038/s41422-019-0145-8 SN - 1001-0602 SN - 1748-7838 VL - 29 IS - 5 SP - 379 EP - 390 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sun, Sheng-Yun A1 - Huang, Jin A1 - Meng, Min-Jie A1 - Lu, Jia-Hai A1 - Hocher, Berthold A1 - Liu, Kang-Li A1 - Yang, Qin-He A1 - Zhu, Xiao-Feng T1 - Improvement of lipid profile and reduction of body weight by Shan He Jian Fei Granules in high fat diet-induced obese rats JF - Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion N2 - Background: The goal was to study lipid profiles (TG, TC, LDL, HDL), effects on serum leptin, and fat tissue adiponectin, and resistin as well as body weight effects of Shan He Jian Fei Granules (SHJFG) in rats on a high fat diet. Methods: Rats were randomly divided into five groups: normal control group fed with normal fat diet, rats on high fat diet receiving low dosage, middle dosage, high dosage of Shan He Jian Fei Granules (SHJFG) as well as a high fat diet group receiving placebo. Rats were treated for 8 weeks. Body weight and naso-anal length of each rat were recorded and Lee's index was calculated. Serum TG, TC, LDL, HDL and leptin concentrations were analyzed. The gene expressions of adiponectin and resistin in adipose tissues were tested by RT-PCR. Results: Compared to the high-fat diet group, body weights, Lee's indexes, weight of fat tissues and serum TG, TC, LDL and leptin of SHJFG groups significantly decreased (p<0.05), whereas mRNA expressions of adiponectin and resistin of SHJFG groups significantly increased (p<0.05). Conclusions: SHJFG could significantly lower body weight and serum TG, TC, and LDL of obese rats. The effects of SHJFG in lowering leptin synthesis and raising mRNA expression of adiponectin and resistin in fat tissues may act as part of the mechanisms in lowering body weight of obese rats. Further studies are needed to demonstrate whether SHJFG may also reduce overall cardiovascular morbidity and mortality like other lipid lowering drugs. KW - obesity KW - high-fat diet KW - Shan He Jian Fei Granules (SHJFG) KW - lipid KW - adiponectin KW - resistin KW - leptin Y1 - 2012 SN - 1433-6510 VL - 58 IS - 1-2 SP - 81 EP - 87 PB - Clin Lab Publ., Verl. Klinisches Labor CY - Heidelberg ER - TY - JOUR A1 - Ran, Niva A. A1 - Roland, Steffen A1 - Love, John A. A1 - Savikhin, Victoria A1 - Takacs, Christopher J. A1 - Fu, Yao-Tsung A1 - Li, Hong A1 - Coropceanu, Veaceslav A1 - Liu, Xiaofeng A1 - Bredas, Jean-Luc A1 - Bazan, Guillermo C. A1 - Toney, Michael F. A1 - Neher, Dieter A1 - Thuc-Quyen Nguyen, T1 - Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency JF - Nature Communications N2 - A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/ acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation. Y1 - 2017 U6 - https://doi.org/10.1038/s41467-017-00107-4 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER -