TY - JOUR A1 - Zhou, Ying A1 - Zhang, Ling A1 - Gui, Jiadong A1 - Dong, Fang A1 - Cheng, Sihua A1 - Mei, Xin A1 - Zhang, Linyun A1 - Li, Yongqing A1 - Su, Xinguo A1 - Baldermann, Susanne A1 - Watanabe, Naoharu A1 - Yang, Ziyin T1 - Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis JF - Plant molecular biology reporter N2 - Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP. KW - Camellia sinensis KW - 1-Phenylethanol KW - Phenylpropanoids KW - Short chain dehydrogenase KW - Volatile compound Y1 - 2015 U6 - https://doi.org/10.1007/s11105-014-0751-z SN - 0735-9640 SN - 1572-9818 VL - 33 IS - 2 SP - 253 EP - 263 PB - Springer CY - New York ER - TY - JOUR A1 - Lu, Guanghao A1 - Di Pietro, Riccardo A1 - Kölln, Lisa Sophie A1 - Nasrallah, Iyad A1 - Zhou, Ling A1 - Mollinger, Sonya A1 - Himmelberger, Scott A1 - Koch, Norbert A1 - Salleo, Alberto A1 - Neher, Dieter T1 - Dual-Characteristic Transistors Based on Semiconducting Polymer Blends JF - Advanced electronic materials N2 - A dual-characteristic polymer field-effect transistor has markedly different characteristics in low and high voltage operations. In the low-voltage range (<5 V) it shows sharp subthreshold slopes (0.3–0.4 V dec−1), using which a low-voltage inverter with gain 8 is realized, while high-voltage (>5 V) induces symmetric current with regard to drain and gate voltages, leading to discrete differential (trans) conductances. KW - charge accumulation KW - crystalline ordering KW - field-effect-transistor KW - semiconducting polymers Y1 - 2016 U6 - https://doi.org/10.1002/aelm.201600267 SN - 2199-160X VL - 2 SP - 2344 EP - 2351 PB - Wiley-Blackwell CY - Hoboken ER -