TY - JOUR A1 - Chen, Jie A1 - Günther, Frank A1 - Grosse, Guido A1 - Liu, Lin A1 - Lin, Hui T1 - Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta JF - Remote sensing N2 - Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations. KW - Sentinel-1 InSAR KW - Yedoma uplands KW - Sobo-Sise Island KW - summer heave KW - permafrost thaw subsidence KW - active layer Y1 - 2018 U6 - https://doi.org/10.3390/rs10071152 SN - 2072-4292 VL - 10 IS - 7 PB - MDPI CY - Basel ER - TY - GEN A1 - Chen, Jie A1 - Günther, Frank A1 - Grosse, Guido A1 - Liu, Lin A1 - Lin, Hui T1 - Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 690 KW - Sentinel-1 InSAR KW - Yedoma uplands KW - Sobo-Sise Island KW - summer heave KW - permafrost thaw subsidence KW - active layer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426807 SN - 1866-8372 IS - 690 ER - TY - JOUR A1 - Liu, Hsiang-chin A1 - Lämke, Jörn A1 - Lin, Siou-ying A1 - Hung, Meng-Ju A1 - Liu, Kuan-Ming A1 - Charng, Yee-yung A1 - Bäurle, Isabel T1 - Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress JF - The plant journal N2 - Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. KW - epigenetics KW - priming KW - heat stress KW - H3K4 methylation KW - transcriptional memory KW - Arabidopsis thaliana KW - HSF Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13958 SN - 0960-7412 SN - 1365-313X VL - 95 IS - 3 SP - 401 EP - 413 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Shan, Yuli A1 - Guan, Dabo A1 - Hubacek, Klaus A1 - Zheng, Bo A1 - Davis, Steven J. A1 - Jia, Lichao A1 - Liu, Jianghua A1 - Liu, Zhu A1 - Fromer, Neil A1 - Mi, Zhifu A1 - Meng, Jing A1 - Deng, Xiangzheng A1 - Li, Yuan A1 - Lin, Jintai A1 - Schroeder, Heike A1 - Weisz, Helga A1 - Schellnhuber, Hans Joachim T1 - City-level climate change mitigation in China T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31%) are possible by updating a disproportionately small fraction of existing infrastructure. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1096 KW - carbon-dioxide emissions KW - fired power plants KW - co2 emissions KW - energy use KW - cluster analysis KW - uncertainties KW - urbanization KW - methodology KW - combustion KW - inventory Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471541 SN - 1866-8372 IS - 1096 ER - TY - JOUR A1 - Liu, Lin A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - What are the physical laws of the diffusive search of proteins for their specific binding sites on DNA in the presence of the macromolecular crowding in cells? We performed extensive computer simulations to elucidate the protein target search on DNA. The novel feature is the viscoelastic non-Brownian protein bulk diffusion recently observed experimentally. We examine the influence of the protein-DNA binding affinity and the anomalous diffusion exponent on the target search time. In all cases an optimal search time is found. The relative contribution of intermittent three-dimensional bulk diffusion and one-dimensional sliding of proteins along the DNA is quantified. Our results are discussed in the light of recent single molecule tracking experiments, aiming at a better understanding of the influence of anomalous kinetics of proteins on the facilitated diffusion mechanism. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.6b12413 SN - 1520-6106 VL - 121 SP - 1284 EP - 1289 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stefancu, Andrei A1 - Nan, Lin A1 - Zhu, Li A1 - Chis, Vasile A1 - Bald, Ilko A1 - Liu, Min A1 - Leopold, Nicolae A1 - Maier, Stefan A. A1 - Cortes, Emiliano T1 - Controlling plasmonic chemistry pathways through specific ion effects JF - Advanced optical materials N2 - Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry. KW - chemical interface damping KW - Hofmeister effect KW - hydration layer KW - plasmonic chemistry KW - specific ion effects KW - surface-enhanced Raman scattering Y1 - 2022 U6 - https://doi.org/10.1002/adom.202200397 SN - 2195-1071 VL - 10 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - RPRT A1 - Brodeur, Abel A1 - Mikola, Derek A1 - Cook, Nikolai A1 - Brailey, Thomas A1 - Briggs, Ryan A1 - Gendre, Alexandra de A1 - Dupraz, Yannick A1 - Fiala, Lenka A1 - Gabani, Jacopo A1 - Gauriot, Romain A1 - Haddad, Joanne A1 - Lima, Goncalo A1 - Ankel-Peters, Jörg A1 - Dreber, Anna A1 - Campbell, Douglas A1 - Kattan, Lamis A1 - Fages, Diego Marino A1 - Mierisch, Fabian A1 - Sun, Pu A1 - Wright, Taylor A1 - Connolly, Marie A1 - Hoces de la Guardia, Fernando A1 - Johannesson, Magnus A1 - Miguel, Edward A1 - Vilhuber, Lars A1 - Abarca, Alejandro A1 - Acharya, Mahesh A1 - Adjisse, Sossou Simplice A1 - Akhtar, Ahwaz A1 - Lizardi, Eduardo Alberto Ramirez A1 - Albrecht, Sabina A1 - Andersen, Synve Nygaard A1 - Andlib, Zubaria A1 - Arrora, Falak A1 - Ash, Thomas A1 - Bacher, Etienne A1 - Bachler, Sebastian A1 - Bacon, Félix A1 - Bagues, Manuel A1 - Balogh, Timea A1 - Batmanov, Alisher A1 - Barschkett, Mara A1 - Basdil, B. Kaan A1 - Dower, Jaromneda A1 - Castek, Ondrej A1 - Caviglia-Harris, Jill A1 - Strand, Gabriella Chauca A1 - Chen, Shi A1 - Chzhen, Asya A1 - Chung, Jong A1 - Collins, Jason A1 - Coppock, Alexander A1 - Cordeau, Hugo A1 - Couillard, Ben A1 - Crechet, Jonathan A1 - Crippa, Lorenzo A1 - Cui, Jeanne A1 - Czymara, Christian A1 - Daarstad, Haley A1 - Dao, Danh Chi A1 - Dao, Dong A1 - Schmandt, Marco David A1 - Linde, Astrid de A1 - Melo, Lucas De A1 - Deer, Lachlan A1 - Vera, Micole De A1 - Dimitrova, Velichka A1 - Dollbaum, Jan Fabian A1 - Dollbaum, Jan Matti A1 - Donnelly, Michael A1 - Huynh, Luu Duc Toan A1 - Dumbalska, Tsvetomira A1 - Duncan, Jamie A1 - Duong, Kiet Tuan A1 - Duprey, Thibaut A1 - Dworschak, Christoph A1 - Ellingsrud, Sigmund A1 - Elminejad, Ali A1 - Eissa, Yasmine A1 - Erhart, Andrea A1 - Etingin-Frati, Giulian A1 - Fatemi-Pour, Elaheh A1 - Federice, Alexa A1 - Feld, Jan A1 - Fenig, Guidon A1 - Firouzjaeiangalougah, Mojtaba A1 - Fleisje, Erlend A1 - Fortier-Chouinard, Alexandre A1 - Engel, Julia Francesca A1 - Fries, Tilman A1 - Fortier, Reid A1 - Fréchet, Nadjim A1 - Galipeau, Thomas A1 - Gallegos, Sebastián A1 - Gangji, Areez A1 - Gao, Xiaoying A1 - Garnache, Cloé A1 - Gáspár, Attila A1 - Gavrilova, Evelina A1 - Ghosh, Arijit A1 - Gibney, Garreth A1 - Gibson, Grant A1 - Godager, Geir A1 - Goff, Leonard A1 - Gong, Da A1 - González, Javier A1 - Gretton, Jeremy A1 - Griffa, Cristina A1 - Grigoryeva, Idaliya A1 - Grtting, Maja A1 - Guntermann, Eric A1 - Guo, Jiaqi A1 - Gugushvili, Alexi A1 - Habibnia, Hooman A1 - Häffner, Sonja A1 - Hall, Jonathan D. A1 - Hammar, Olle A1 - Kordt, Amund Hanson A1 - Hashimoto, Barry A1 - Hartley, Jonathan S. A1 - Hausladen, Carina I. A1 - Havránek, Tomáš A1 - Hazen, Jacob A1 - He, Harry A1 - Hepplewhite, Matthew A1 - Herrera-Rodriguez, Mario A1 - Heuer, Felix A1 - Heyes, Anthony A1 - Ho, Anson T. Y. A1 - Holmes, Jonathan A1 - Holzknecht, Armando A1 - Hsu, Yu-Hsiang Dexter A1 - Hu, Shiang-Hung A1 - Huang, Yu-Shiuan A1 - Huebener, Mathias A1 - Huber, Christoph A1 - Huynh, Kim P. A1 - Irsova, Zuzana A1 - Isler, Ozan A1 - Jakobsson, Niklas A1 - Frith, Michael James A1 - Jananji, Raphaël A1 - Jayalath, Tharaka A. A1 - Jetter, Michael A1 - John, Jenny A1 - Forshaw, Rachel Joy A1 - Juan, Felipe A1 - Kadriu, Valon A1 - Karim, Sunny A1 - Kelly, Edmund A1 - Dang, Duy Khanh Hoang A1 - Khushboo, Tazia A1 - Kim, Jin A1 - Kjellsson, Gustav A1 - Kjelsrud, Anders A1 - Kotsadam, Andreas A1 - Korpershoek, Jori A1 - Krashinsky, Lewis A1 - Kundu, Suranjana A1 - Kustov, Alexander A1 - Lalayev, Nurlan A1 - Langlois, Audrée A1 - Laufer, Jill A1 - Lee-Whiting, Blake A1 - Leibing, Andreas A1 - Lenz, Gabriel A1 - Levin, Joel A1 - Li, Peng A1 - Li, Tongzhe A1 - Lin, Yuchen A1 - Listo, Ariel A1 - Liu, Dan A1 - Lu, Xuewen A1 - Lukmanova, Elvina A1 - Luscombe, Alex A1 - Lusher, Lester R. A1 - Lyu, Ke A1 - Ma, Hai A1 - Mäder, Nicolas A1 - Makate, Clifton A1 - Malmberg, Alice A1 - Maitra, Adit A1 - Mandas, Marco A1 - Marcus, Jan A1 - Margaryan, Shushanik A1 - Márk, Lili A1 - Martignano, Andres A1 - Marsh, Abigail A1 - Masetto, Isabella A1 - McCanny, Anthony A1 - McManus, Emma A1 - McWay, Ryan A1 - Metson, Lennard A1 - Kinge, Jonas Minet A1 - Mishra, Sumit A1 - Mohnen, Myra A1 - Möller, Jakob A1 - Montambeault, Rosalie A1 - Montpetit, Sébastien A1 - Morin, Louis-Philippe A1 - Morris, Todd A1 - Moser, Scott A1 - Motoki, Fabio A1 - Muehlenbachs, Lucija A1 - Musulan, Andreea A1 - Musumeci, Marco A1 - Nabin, Munirul A1 - Nchare, Karim A1 - Neubauer, Florian A1 - Nguyen, Quan M. P. A1 - Nguyen, Tuan A1 - Nguyen-Tien, Viet A1 - Niazi, Ali A1 - Nikolaishvili, Giorgi A1 - Nordstrom, Ardyn A1 - Nü, Patrick A1 - Odermatt, Angela A1 - Olson, Matt A1 - ien, Henning A1 - Ölkers, Tim A1 - Vert, Miquel Oliver i. A1 - Oral, Emre A1 - Oswald, Christian A1 - Ousman, Ali A1 - Özak, Ömer A1 - Pandey, Shubham A1 - Pavlov, Alexandre A1 - Pelli, Martino A1 - Penheiro, Romeo A1 - Park, RyuGyung A1 - Martel, Eva Pérez A1 - Petrovičová, Tereza A1 - Phan, Linh A1 - Prettyman, Alexa A1 - Procházka, Jakub A1 - Putri, Aqila A1 - Quandt, Julian A1 - Qiu, Kangyu A1 - Nguyen, Loan Quynh Thi A1 - Rahman, Andaleeb A1 - Rea, Carson H. A1 - Reiremo, Adam A1 - Renée, Laëtitia A1 - Richardson, Joseph A1 - Rivers, Nicholas A1 - Rodrigues, Bruno A1 - Roelofs, William A1 - Roemer, Tobias A1 - Rogeberg, Ole A1 - Rose, Julian A1 - Roskos-Ewoldsen, Andrew A1 - Rosmer, Paul A1 - Sabada, Barbara A1 - Saberian, Soodeh A1 - Salamanca, Nicolas A1 - Sator, Georg A1 - Sawyer, Antoine A1 - Scates, Daniel A1 - Schlüter, Elmar A1 - Sells, Cameron A1 - Sen, Sharmi A1 - Sethi, Ritika A1 - Shcherbiak, Anna A1 - Sogaolu, Moyosore A1 - Soosalu, Matt A1 - Srensen, Erik A1 - Sovani, Manali A1 - Spencer, Noah A1 - Staubli, Stefan A1 - Stans, Renske A1 - Stewart, Anya A1 - Stips, Felix A1 - Stockley, Kieran A1 - Strobel, Stephenson A1 - Struby, Ethan A1 - Tang, John A1 - Tanrisever, Idil A1 - Yang, Thomas Tao A1 - Tastan, Ipek A1 - Tatić, Dejan A1 - Tatlow, Benjamin A1 - Seuyong, Féraud Tchuisseu A1 - Thériault, Rémi A1 - Thivierge, Vincent A1 - Tian, Wenjie A1 - Toma, Filip-Mihai A1 - Totarelli, Maddalena A1 - Tran, Van-Anh A1 - Truong, Hung A1 - Tsoy, Nikita A1 - Tuzcuoglu, Kerem A1 - Ubfal, Diego A1 - Villalobos, Laura A1 - Walterskirchen, Julian A1 - Wang, Joseph Taoyi A1 - Wattal, Vasudha A1 - Webb, Matthew D. A1 - Weber, Bryan A1 - Weisser, Reinhard A1 - Weng, Wei-Chien A1 - Westheide, Christian A1 - White, Kimberly A1 - Winter, Jacob A1 - Wochner, Timo A1 - Woerman, Matt A1 - Wong, Jared A1 - Woodard, Ritchie A1 - Wroński, Marcin A1 - Yazbeck, Myra A1 - Yang, Gustav Chung A1 - Yap, Luther A1 - Yassin, Kareman A1 - Ye, Hao A1 - Yoon, Jin Young A1 - Yurris, Chris A1 - Zahra, Tahreen A1 - Zaneva, Mirela A1 - Zayat, Aline A1 - Zhang, Jonathan A1 - Zhao, Ziwei A1 - Yaolang, Zhong T1 - Mass reproducibility and replicability BT - a new hope T2 - I4R discussion paper series N2 - This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes. KW - conomics KW - open science KW - political science KW - replication KW - reproduction KW - research transparency Y1 - 2024 SN - 2752-1931 IS - 107 PB - Institute for Replication CY - Essen ER -