TY - JOUR A1 - Xu, QingHai A1 - Cao, Xianyong A1 - Tian, Fang A1 - Zhang, ShengRui A1 - Li, YueCong A1 - Li, ManYue A1 - Li, Jie A1 - Liu, YaoLiang A1 - Liang, Jian T1 - Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction JF - Science China N2 - The Relative Pollen Productivities (RPPs) of common steppe species are estimated using Extended R-value (ERV) model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China. Artemisia, Chenopodiaceae, Poaceae, Cyperaceae, and Asteraceae are the dominant pollen types in pollen assemblages, reflecting the typical steppe communities well. The five dominant pollen types and six common types (Thalictrum, Iridaceae, Potentilla, Ephedra, Brassicaceae, and Ulmus) have strong wind transport abilities; the estimated Relevant Source Area of Pollen (RSAP) is ca. 1000 m when the sediment basin radius is set at 0.5 m. Ulmus, Artemisia, Brassicaceae, Chenopodiaceae, and Thalictrum have relative high RPPs; Poaceae, Cyperaceae, Potentilla, and Ephedra pollen have moderate RPPs; Asteraceae and Iridaceae have low RPPs. The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction. However, the RPPs of Asteraceae and Iridaceae are obviously underestimated, and those of Poaceae, Chenopodiaceae, and Ephedra are either slightly underestimated or slightly overestimated, suggesting that those RPPs should be considered with caution. These RPPs were applied to estimating plant abundances for two fossil pollen spectra (from the Lake Bayanchagan and Lake Haoluku) covering the Holocene in typical steppe area, using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae, Cyperaceae, and Artemisia plants flourished in this area before 6500-5600 cal yr BP, and then was replaced by present typical steppe. KW - typical steppe KW - modern surface pollen KW - relative pollen productivity KW - relevant pollen source area KW - paleovegetation Y1 - 2014 U6 - https://doi.org/10.1007/s11430-013-4738-7 SN - 1674-7313 SN - 1869-1897 VL - 57 IS - 6 SP - 1254 EP - 1266 PB - Science China Press CY - Beijing ER - TY - JOUR A1 - Jiang, Yi A1 - Mansfeld, Ulrich A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability JF - Materials & design N2 - Material surfaces with tailored aerophobicity are crucial for applications where gas bubble wettability has to be controlled, e.g., gas storage and transport, electrodes, bioreactors or medical devices. Here, we present switchable underwater aerophobicity of hydrophobic polymeric substrates, which respond to heat with multilevel micro-and nanotopographical changes. The cross-linked poly[ethylene-co-(vinyl acetate)] substrates possess arrays of microcylinders with a nanorough top surface. It is hypothesized that the specific micro-/nanotopography of the surface allows trapping of a water film at the micro interspace and in this way generates the aerophobic behavior. The structured substrates were programmed to a temporarily stable, nanoscale flat substrate showing aerophilic behavior. Upon heating, the topographical changes caused a switch in contact angle from aerophilic to aerophobic for approaching air bubbles. In this way, the initial adhesion of air bubbles to the programmed flat substrate could be turned into repellence for the recovered substrate surface. The temperature at which the repellence of air bubbles starts can be adjusted from 58 +/- 3 degrees C to 73 +/- 3 degrees C by varying the deformation temperature applied during the temperature-memory programming procedure. The presented actively switching polymeric substrates are attractive candidates for applications, where an on-demand gas bubble repellence is advantageous. (c) 2018 Helmholtz-Zentrum Geesthacht, Zentrum fur Material- und Kustenforschung. Published by Elsevier Ltd. KW - Aerophobicity KW - Temperature-memory effect KW - Switchable wettability KW - Air bubble repellence KW - Thermo-responsive polymer Y1 - 2018 U6 - https://doi.org/10.1016/j.matdes.2018.12.002 SN - 0264-1275 SN - 1873-4197 VL - 163 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Weigel, Thomas A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - The influence of thermal treatment on the morphology in differently prepared films of a oligodepsipeptide based multiblock copolymer JF - Polymers for advanced technologies N2 - Degradable multiblock copolymers prepared from equal weight amounts of poly(epsilon-caprolactone)-diol (PCL-diol) and poly[oligo(3S-iso-butylmorpholine-2,5-dione)]-diol (PIBMD-diol), named PCL-PIBMD, provide a phase-segregated morphology. It exhibits a low melting temperature from PCL domains (T-m,T-PCL) of 382 degrees C and a high T-m,T-PIBMD of 170 +/- 2 degrees C with a glass transition temperature (T-g,T-PIBMD) at 42 +/- 2 degrees C from PIBMD domains. In this study, we explored the influence of applying different thermal treatments on the resulting morphologies of solution-cast and spin-coated PCL-PIBMD thin films, which showed different initial surface morphologies. Differential scanning calorimetry results and atomic force microscopy images after different thermal treatments indicated that PCL and PIBMD domains showed similar crystallization behaviors in 270 +/- 30 mu m thick solution-cast films as well as in 30 +/- 2 and 8 +/- 1nm thick spin-coated PCL-PIBMD films. Existing PIBMD crystalline domains highly restricted the generation of PCL crystalline domains during cooling when the sample was annealed at 180 degrees C. By annealing the sample above 120 degrees C, the PIBMD domains crystallized sufficiently and covered the free surface, which restricted the crystallization of PCL domains during cooling. The PCL domains can crystallize by hindering the crystallization of PIBMD domains via the fast vitrification of PIBMD domains when the sample was cooled/quenched in liquid nitrogen after annealing at 180 degrees C. These findings contribute to a better fundamental understanding of the crystallization mechanism of multi-block copolymers containing two crystallizable domains whereby the T-g of the higher melting domain type is in the same temperature range as the T-m of the lower melting domain type. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - multiblock copolymer KW - oligodepsipeptides KW - phase morphology KW - thermal treatments KW - crystallization behavior Y1 - 2017 U6 - https://doi.org/10.1002/pat.3953 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1339 EP - 1345 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Investigating the roles of crystallizable and glassy switching segments within multiblock copolymer shape-memory materials JF - MRS Advances N2 - The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(epsilon-caprolactone) and crystallizable polyfoligo(3S-iso-butylmorpholine-2,5-dione) segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCI.-PU and PMMD-PU investigated by means of DSC, SAXS and WARS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900% were applied for programming PCL-PIBMD films at 50 degrees C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600% with the PCL contribution to fixation increasing to 42 +/- 2% at programming strains of 900% This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure function relation in multiblock copolymers with both crystallizable and glassy switching segments. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.590 SN - 2059-8521 VL - 3 IS - 63 SP - 3741 EP - 3749 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wang, Li A1 - Heuchel, Matthias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Influence of a polyester coating of magnetic nanoparticles on magnetic heating behavior of shape-memory polymer-based composites JF - Journal of applied biomaterials & functional materials N2 - Background: Magnetic composites of thermosensitive shape-memory polymers (SMPs) and magnetite nanoparticles (MNPs) allow noncontact actuation of the shape-memory effect in an alternating magnetic field. In this study, we investigated whether the magnetic heating capability of cross-linked poly(epsilon-caprolactone)/MNP composites (cPCLC) could be improved by covalent coating of MNPs with oligo(epsilon-caprolactone) (OCL). Methods: Two different types of cPCLC containing uncoated and OCL-coated MNP with identical magnetite weight content were prepared by thermally induced polymerization of poly(epsilon-caprolactone) diisocyanatoethyl methacrylate. Both cPCLCs exhibited a melting transition at T-m = 48 degrees C, which could be used as switching transition. Results: The dispersion of the embedded nanoparticles within the polymer matrix could be substantially improved, when the OCL-coated MNPs were used, as visualized by scanning electron microscopy. We could further demonstrate that in this way the maximal achievable bulk temperature (T-bulk) obtained within the cPCLC test specimen in magnetic heating experiments at a magnetic field strength of H = 30 kA.m(-1) could be increased from T bulk = 48 degrees C to T bulk = 74 degrees C. KW - Magnetic composites KW - Magnetite nanoparticles KW - Polymer networks KW - Shape-memory effect Y1 - 2012 U6 - https://doi.org/10.5301/JABFM.2012.10293 SN - 2280-8000 VL - 10 IS - 3 SP - 203 EP - 209 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Zhang, Quanchao A1 - Sauter, Tilman A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying JF - Macromolecular materials and engineering N2 - Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C. KW - biomaterials KW - microparticles KW - processing KW - stimuli-sensitive polymers KW - shape-memory effect Y1 - 2015 U6 - https://doi.org/10.1002/mame.201400267 SN - 1438-7492 SN - 1439-2054 VL - 300 IS - 5 SP - 522 EP - 530 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fang, Liang A1 - Gould, Oliver E. C. A1 - Lysyakova, Liudmila A1 - Jiang, Yi A1 - Sauter, Tilman A1 - Frank, Oliver A1 - Becker, Tino A1 - Schossig, Michael A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1% or 21 +/- 1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems. KW - cyclic thermomechanical testing KW - atomic force microscopy KW - soft matter micro- and nanowires KW - shape-memory effect KW - materials science Y1 - 2018 U6 - https://doi.org/10.1002/cphc.201701362 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 16 SP - 2078 EP - 2084 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Krüger-Genge, Anne A1 - Dietze, Stefanie A1 - Yan, Wan A1 - Liu, Yue A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Endothelial cell migration, adhesion and proliferation on different polymeric substrates JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (theta(adv) = 119 degrees +/- 2 degrees), on low-attachment plate LAP (theta(adv) = 28 degrees +/- 2 degrees) and on polystyrene based tissue culture plates (TCP, theta(adv) = 22 degrees +/- 1 degrees). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1 +/- 5.2 mu m, the mean velocity (MV) 0.40 +/- 0.3 mu m.min(-1) and the complete length of the trajectory (LT) was 710 +/- 440 mu m. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840 +/- 550 mu m, the SML 6.1 +/- 5.2 mu m and the MV 0.44 +/- 0.3 mu m.min(-1). The trajectories on LAP differed significantly in respect to SML (2.4 +/- 3.9 mu m, p <0.05), the MV (0.16 +/- 0.3 mu m.min(-1), p <0.05) and the LT (410 +/- 300 mu m, p <0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials. KW - Endothelial cells KW - migration KW - polymer-based biomaterials KW - cytokine release Y1 - 2019 U6 - https://doi.org/10.3233/CH-189317 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 511 EP - 529 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Liu, Yue A1 - Razzaq, Muhammad Yasar A1 - Rudolph, Tobias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Two-Level Shape Changes of Polymeric Microcuboids Prepared from Crystallizable Copolymer Networks JF - Macromolecules : a publication of the American Chemical Society N2 - Polymeric microdevices bearing features like nonspherical shapes or spatially segregated surface properties are of increasing importance in biological and medical analysis, drug delivery, and bioimaging or microfluidic systems as well as in micromechanics, sensors, information storage, or data carrier devices. Here, a method to fabricate programmable microcuboids with shape-memory capability and the quantification of their recovery at different levels is reported. The method uses the soft lithographic technique to create microcuboids with well-defined sizes and surface properties. Microcuboids having an edge length of 25 mu m and a height of 10 mu m were prepared from cross-linked poly[ethylene-co-(vinyl acetate)] (cPEVA) with different vinyl acetate contents and were programmed by compression with various deformation degrees at elevated temperatures. The microlevel shape-recovery of the cuboidal geometry during heating was monitored by optical microscopy (OM) and atomic force microscopy (AFM) studying the related changes in the projected area (PA) or height, while the nanolevel changes of the nanosurface roughness were investigated by in situ AFM. The shape-memory effect at the microlevel was quantified by the recovery ratio of cuboids (R-r,R-micro), while at the. nanolevel, the recovery ratio of the nanoroughness (R-r,R-nano) was measured. The values of R-r,R-micro,,micro could be tailored in a range from 42 +/- 1% to 102 +/- 1% and Rr,nano from 89 +/- 6% to 136 +/- 21% depending on the applied compression ratio and the amount of vinyl acetate content in the cPEVA microcuboids. Y1 - 2017 U6 - https://doi.org/10.1021/acs.macromol.6b02237 SN - 0024-9297 SN - 1520-5835 VL - 50 SP - 2518 EP - 2527 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Rudolph, Tobias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Polymeric microcuboids programmable for temperature-memory JF - Macromolecular materials and engineering N2 - Microobjects with programmable mechanical functionality are highly desirable for the creation of flexible electronics, sensors, and microfluidic systems, where fabrication/programming and quantification methods are required to fully control and implement dynamic physical behavior. Here, programmable microcuboids with defined geometries are prepared by a template-based method from crosslinked poly[ethylene-co-(vinyl acetate)] elastomers. These microobjects could be programmed to exhibit a temperature-memory effect or a shape-memory polymer actuation capability. Switching temperaturesT(sw)during shape recovery of 55 +/- 2, 68 +/- 2, 80 +/- 2, and 86 +/- 2 degrees C are achieved by tuning programming temperatures to 55, 70, 85, and 100 degrees C, respectively. Actuation is achieved with a reversible strain of 2.9 +/- 0.2% to 6.7 +/- 0.1%, whereby greater compression ratios and higher separation temperatures induce a more pronounced actuation. Micro-geometry change is quantified using optical microscopy and atomic force microscopy. The realization and quantification of microparticles, capable of a tunable temperature responsive shape-change or reversible actuation, represent a key development in the creation of soft microscale devices for drug delivery or microrobotics. KW - actuation KW - atomic force microscopy KW - biomaterials KW - microparticles KW - shape-memory polymers Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000333 SN - 1438-7492 SN - 1439-2054 VL - 305 IS - 10 PB - Wiley-VCH CY - Weinheim ER -