TY - JOUR A1 - Middeldorp, Christel M. A1 - Mahajan, Anubha A1 - Horikoshi, Momoko A1 - Robertson, Neil R. A1 - Beaumont, Robin N. A1 - Bradfield, Jonathan P. A1 - Bustamante, Mariona A1 - Cousminer, Diana L. A1 - Day, Felix R. A1 - De Silva, N. Maneka A1 - Guxens, Monica A1 - Mook-Kanamori, Dennis O. A1 - St Pourcain, Beate A1 - Warrington, Nicole M. A1 - Adair, Linda S. A1 - Ahlqvist, Emma A1 - Ahluwalia, Tarunveer Singh A1 - Almgren, Peter A1 - Ang, Wei A1 - Atalay, Mustafa A1 - Auvinen, Juha A1 - Bartels, Meike A1 - Beckmann, Jacques S. A1 - Bilbao, Jose Ramon A1 - Bond, Tom A1 - Borja, Judith B. A1 - Cavadino, Alana A1 - Charoen, Pimphen A1 - Chen, Zhanghua A1 - Coin, Lachlan A1 - Cooper, Cyrus A1 - Curtin, John A. A1 - Custovic, Adnan A1 - Das, Shikta A1 - Davies, Gareth E. A1 - Dedoussis, George V. A1 - Duijts, Liesbeth A1 - Eastwood, Peter R. A1 - Eliasen, Anders U. A1 - Elliott, Paul A1 - Eriksson, Johan G. A1 - Estivill, Xavier A1 - Fadista, Joao A1 - Fedko, Iryna O. A1 - Frayling, Timothy M. A1 - Gaillard, Romy A1 - Gauderman, W. James A1 - Geller, Frank A1 - Gilliland, Frank A1 - Gilsanz, Vincente A1 - Granell, Raquel A1 - Grarup, Niels A1 - Groop, Leif A1 - Hadley, Dexter A1 - Hakonarson, Hakon A1 - Hansen, Torben A1 - Hartman, Catharina A. A1 - Hattersley, Andrew T. A1 - Hayes, M. Geoffrey A1 - Hebebrand, Johannes A1 - Heinrich, Joachim A1 - Helgeland, Oyvind A1 - Henders, Anjali K. A1 - Henderson, John A1 - Henriksen, Tine B. A1 - Hirschhorn, Joel N. A1 - Hivert, Marie-France A1 - Hocher, Berthold A1 - Holloway, John W. A1 - Holt, Patrick A1 - Hottenga, Jouke-Jan A1 - Hypponen, Elina A1 - Iniguez, Carmen A1 - Johansson, Stefan A1 - Jugessur, Astanand A1 - Kahonen, Mika A1 - Kalkwarf, Heidi J. A1 - Kaprio, Jaakko A1 - Karhunen, Ville A1 - Kemp, John P. A1 - Kerkhof, Marjan A1 - Koppelman, Gerard H. A1 - Korner, Antje A1 - Kotecha, Sailesh A1 - Kreiner-Moller, Eskil A1 - Kulohoma, Benard A1 - Kumar, Ashish A1 - Kutalik, Zoltan A1 - Lahti, Jari A1 - Lappe, Joan M. A1 - Larsson, Henrik A1 - Lehtimaki, Terho A1 - Lewin, Alexandra M. A1 - Li, Jin A1 - Lichtenstein, Paul A1 - Lindgren, Cecilia M. A1 - Lindi, Virpi A1 - Linneberg, Allan A1 - Liu, Xueping A1 - Liu, Jun A1 - Lowe, William L. A1 - Lundstrom, Sebastian A1 - Lyytikainen, Leo-Pekka A1 - Ma, Ronald C. W. A1 - Mace, Aurelien A1 - Magi, Reedik A1 - Magnus, Per A1 - Mamun, Abdullah A. A1 - Mannikko, Minna A1 - Martin, Nicholas G. A1 - Mbarek, Hamdi A1 - McCarthy, Nina S. A1 - Medland, Sarah E. A1 - Melbye, Mads A1 - Melen, Erik A1 - Mohlke, Karen L. A1 - Monnereau, Claire A1 - Morgen, Camilla S. A1 - Morris, Andrew P. A1 - Murray, Jeffrey C. A1 - Myhre, Ronny A1 - Najman, Jackob M. A1 - Nivard, Michel G. A1 - Nohr, Ellen A. A1 - Nolte, Ilja M. A1 - Ntalla, Ioanna A1 - Oberfield, Sharon E. A1 - Oken, Emily A1 - Oldehinkel, Albertine J. A1 - Pahkala, Katja A1 - Palviainen, Teemu A1 - Panoutsopoulou, Kalliope A1 - Pedersen, Oluf A1 - Pennell, Craig E. A1 - Pershagen, Goran A1 - Pitkanen, Niina A1 - Plomin, Robert A1 - Power, Christine A1 - Prasad, Rashmi B. A1 - Prokopenko, Inga A1 - Pulkkinen, Lea A1 - Raikkonen, Katri A1 - Raitakari, Olli T. A1 - Reynolds, Rebecca M. A1 - Richmond, Rebecca C. A1 - Rivadeneira, Fernando A1 - Rodriguez, Alina A1 - Rose, Richard J. A1 - Salem, Rany A1 - Santa-Marina, Loreto A1 - Saw, Seang-Mei A1 - Schnurr, Theresia M. A1 - Scott, James G. A1 - Selzam, Saskia A1 - Shepherd, John A. A1 - Simpson, Angela A1 - Skotte, Line A1 - Sleiman, Patrick M. A. A1 - Snieder, Harold A1 - Sorensen, Thorkild I. A. A1 - Standl, Marie A1 - Steegers, Eric A. P. A1 - Strachan, David P. A1 - Straker, Leon A1 - Strandberg, Timo A1 - Taylor, Michelle A1 - Teo, Yik-Ying A1 - Thiering, Elisabeth A1 - Torrent, Maties A1 - Tyrrell, Jessica A1 - Uitterlinden, Andre G. A1 - van Beijsterveldt, Toos A1 - van der Most, Peter J. A1 - van Duijn, Cornelia M. A1 - Viikari, Jorma A1 - Vilor-Tejedor, Natalia A1 - Vogelezang, Suzanne A1 - Vonk, Judith M. A1 - Vrijkotte, Tanja G. M. A1 - Vuoksimaa, Eero A1 - Wang, Carol A. A1 - Watkins, William J. A1 - Wichmann, H-Erich A1 - Willemsen, Gonneke A1 - Williams, Gail M. A1 - Wilson, James F. A1 - Wray, Naomi R. A1 - Xu, Shujing A1 - Xu, Cheng-Jian A1 - Yaghootkar, Hanieh A1 - Yi, Lu A1 - Zafarmand, Mohammad Hadi A1 - Zeggini, Eleftheria A1 - Zemel, Babette S. A1 - Hinney, Anke A1 - Lakka, Timo A. A1 - Whitehouse, Andrew J. O. A1 - Sunyer, Jordi A1 - Widen, Elisabeth E. A1 - Feenstra, Bjarke A1 - Sebert, Sylvain A1 - Jacobsson, Bo A1 - Njolstad, Pal R. A1 - Stoltenberg, Camilla A1 - Smith, George Davey A1 - Lawlor, Debbie A. A1 - Paternoster, Lavinia A1 - Timpson, Nicholas J. A1 - Ong, Ken K. A1 - Bisgaard, Hans A1 - Bonnelykke, Klaus A1 - Jaddoe, Vincent W. V. A1 - Tiemeier, Henning A1 - Jarvelin, Marjo-Riitta A1 - Evans, David M. A1 - Perry, John R. B. A1 - Grant, Struan F. A. A1 - Boomsma, Dorret I. A1 - Freathy, Rachel M. A1 - McCarthy, Mark I. A1 - Felix, Janine F. T1 - The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia BT - design, results and future prospects JF - European journal of epidemiology N2 - The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites. KW - Genetics KW - Consortium KW - Childhood traits and disorders KW - Longitudinal Y1 - 2019 U6 - https://doi.org/10.1007/s10654-019-00502-9 SN - 0393-2990 SN - 1573-7284 VL - 34 IS - 3 SP - 279 EP - 300 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Mahata, Khadak Singh A1 - Panday, Arnico Kumar A1 - Rupakheti, Maheswar A1 - Singh, Ashish A1 - Naja, Manish A1 - Lawrence, Mark T1 - Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) international air pollution measurement campaign was carried out from December 2012 to June 2013 in the Kathmandu Valley and surrounding regions in Nepal. The Kathmandu Valley is a bowl-shaped basin with a severe air pollution problem. This paper reports measurements of two major greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2), along with the pollutant CO, that began during the campaign and were extended for 1 year at the SusKat-ABC supersite in Bode, a semi-urban location in the Kathmandu Valley. Simultaneous measurements were also made during 2015 in Bode and a nearby rural site (Chanban) similar to 25 km (aerial distance) to the southwest of Bode on the other side of a tall ridge. The ambient mixing ratios of methane (CH4), carbon dioxide (CO2), water vapor, and carbon monoxide (CO) were measured with a cavity ring-down spectrometer (G2401; Picarro, USA) along with meteorological parameters for 1 year (March 2013-March 2014). These measurements are the first of their kind in the central Himalayan foothills. At Bode, the annual average mixing ratios of CO2 and CH4 were 419.3 (+/- 6.0) ppm and 2.192 (+/- 0.066) ppm, respectively. These values are higher than the levels observed at background sites such as Mauna Loa, USA (CO2: 396.8 +/- 2.0 ppm, CH4: 1.831 +/- 0.110 ppm) and Waliguan, China (CO2: 397.7 +/- 3.6 ppm, CH4: 1.879 +/- 0.009 ppm) during the same period and at other urban and semi-urban sites in the region, such as Ahmedabad and Shadnagar (India). They varied slightly across the seasons at Bode, with seasonal average CH4 mixing ratios of 2.157 (+/- 0.230) ppm in the pre-monsoon season, 2.199 (+/- 0.241) ppm in the monsoon, 2.210 (+/- 0.200) ppm in the post-monsoon, and 2.214 (+/- 0.209) ppm in the winter season. The average CO2 mixing ratios were 426.2 (+/- 25.5) ppm in the pre-monsoon, 413.5 (+/- 24.2) ppm in the monsoon, 417.3 (+/- 23.1) ppm in the postmonsoon, and 421.9 (+/- 20.3) ppm in the winter season. The maximum seasonal mean mixing ratio of CH4 in winter was only 0.057 ppm or 2.6% higher than the seasonal minimum during the pre-monsoon period, while CO2 was 12.8 ppm or 3.1% higher during the pre-monsoon period (seasonal maximum) than during the monsoon (seasonal minimum). On the other hand, the CO mixing ratio at Bode was 191% higher during the winter than during the monsoon season. The enhancement in CO2 mixing ratios during the pre-monsoon season is associated with additional CO2 emissions from forest fires and agro-residue burning in northern South Asia in addition to local emissions in the Kathmandu Valley. Published CO = CO2 ratios of different emission sources in Nepal and India were compared with the observed CO = CO2 ratios in this study. This comparison suggested that the major sources in the Kathmandu Valley were residential cooking and vehicle exhaust in all seasons except winter. In winter, brick kiln emissions were a major source. Simultaneous measurements in Bode and Chanban (15 July-3 October 2015) revealed that the mixing ratios of CO2, CH4, and CO were 3.8, 12, and 64% higher in Bode than Chanban. The Kathmandu Valley thus has significant emissions from local sources, which can also be attributed to its bowl-shaped geography that is conducive to pollution build-up. At Bode, all three gas species (CO2, CH4, and CO) showed strong diurnal patterns in their mixing ratios with a pronounced morning peak (ca. 08:00), a dip in the afternoon, and a gradual increase again through the night until the next morning. CH4 and CO at Chanban, however, did not show any noticeable diurnal variations. These measurements provide the first insights into the diurnal and seasonal variation in key greenhouse gases and air pollutants and their local and regional sources, which is important information for atmospheric research in the region. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 610 KW - air-pollution transport KW - black carbon KW - trace gases KW - numerical-simulation KW - ozone concentrations KW - late wintertime KW - South-Asia KW - urban site KW - NCOP KW - India Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416643 IS - 610 SP - 12573 EP - 12596 ER - TY - GEN A1 - Mahata, Khadak Singh A1 - Rupakheti, Maheswar A1 - Panday, Arnico Kumar A1 - Bhardwaj, Piyush A1 - Naja, Manish A1 - Singh, Ashish A1 - Mues, Andrea A1 - Cristofanelli, Paolo A1 - Pudasainee, Deepak A1 - Bonasoni, Paolo A1 - Lawrence, Mark T1 - Observation and analysis of spatio-temporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Residents of the Kathmandu Valley experience severe particulate and gaseous air pollution throughout most of the year, even during much of the rainy season. The knowledge base for understanding the air pollution in the Kathmandu Valley was previously very limited, but is improving rapidly due to several field measurement studies conducted in the last few years. Thus far, most analyses of observations in the Kathmandu Valley have been limited to short periods of time at single locations. This study extends on the past studies by examining the spatial and temporal characteristics of two important gaseous air pollutant (CO and O3) based on simultaneous observations over a longer period at five locations within the valley and on its rim, including a supersite (at Bode in the valley center, 1345m above sea level) and four satellite sites (at Paknajol, 1380masl in the Kathmandu city center, at Bhimdhunga (1522masl), a mountain pass on the valley's western rim, at Nagarkot (1901masl), another mountain pass on the eastern rim, and Naikhandi, near the valley's only river outlet). CO and O3 mixing ratios were monitored from January to July 2013, along with other gases and aerosol particles by instruments deployed at the Bode supersite during the international air pollution measurement campaign SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – endorsed by the Atmospheric Brown Clouds program of UNEP). The O3 monitoring at Bode, Paknajol and Nagarkot as well as the CO monitoring at Bode were extended beyond July 2013 to investigate their variability over a complete annual cycle. Higher CO mixing ratios were found at Bode than at the outskirt sites (Bhimdhunga, Naikhandi and Nagarkot), and all sites except Nagarkot showed distinct diurnal cycles of CO mixing ratio with morning peaks and daytime lows. Seasonally, CO was higher during the pre-monsoon and winter seasons, especially due to the emissions from brick kiln industries, which only operate during this period, as well as increased domestic heating during winter, and regional forest fires and agro-residue burning. It was lower during the monsoon due to rainfall, which reduces open burning activities within the valley and in the surrounding regions, and thus reduces the sources of CO. The meteorology of the valley also played a key role in determining the CO mixing ratios. Furthermore, there was evidence of some influence of pollution from the greater region around the valley. A top-down estimate of the CO emission flux was made by using the CO mixing ratio and mixing layer height (MLH) measured at Bode. The estimated annual CO flux at Bode was 4.92μgm−2s−1, which is 2–14 times higher than that in widely used emission inventory databases (EDGAR HTAP, REAS and INTEX-B). This difference in CO flux between Bode and other emission databases likely arises from large uncertainties in both the top-down and bottom-up approaches to estimating the emission flux. The O3 mixing ratio was found to be highest during the pre-monsoon season at all sites, while the timing of the seasonal minimum varied across the sites. The daily maximum 8 hour average O3 exceeded the WHO recommended guideline of 50ppb on more days at the hilltop station of Nagarkot (159/357 days) than at the urban valley bottom sites of Paknajol (132/354 days) and Bode (102/353 days), presumably due to the influence of free-tropospheric air at the high-altitude site, as well as to titration of O3 by fresh NOx emissions near the urban sites. More than 78% of the exceedance days were during the pre-monsoon period at all sites. This was due to both favorable meteorological conditions as well as contributions of precursors from regional sources such as forest fires and agro-residue burning. The high O3 mixing ratio observed during the pre-monsoon period is of a high concern for human health and ecosystems, including agroecosystems in the Kathmandu Valley and surrounding regions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 848 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416626 SN - 1866-8372 IS - 848 ER - TY - JOUR A1 - Mahata, Khadak Singh A1 - Panday, Arnico Kumar A1 - Rupakheti, Maheswar A1 - Singh, Ashish A1 - Naja, Manish A1 - Lawrence, Mark T1 - Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas JF - Atmospheric Chemistry and Physics N2 - The SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) international air pollution measurement campaign was carried out from December 2012 to June 2013 in the Kathmandu Valley and surrounding regions in Nepal. The Kathmandu Valley is a bowl-shaped basin with a severe air pollution problem. This paper reports measurements of two major greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2), along with the pollutant CO, that began during the campaign and were extended for 1 year at the SusKat-ABC supersite in Bode, a semi-urban location in the Kathmandu Valley. Simultaneous measurements were also made during 2015 in Bode and a nearby rural site (Chanban) similar to 25 km (aerial distance) to the southwest of Bode on the other side of a tall ridge. The ambient mixing ratios of methane (CH4), carbon dioxide (CO2), water vapor, and carbon monoxide (CO) were measured with a cavity ring-down spectrometer (G2401; Picarro, USA) along with meteorological parameters for 1 year (March 2013-March 2014). These measurements are the first of their kind in the central Himalayan foothills. At Bode, the annual average mixing ratios of CO2 and CH4 were 419.3 (+/- 6.0) ppm and 2.192 (+/- 0.066) ppm, respectively. These values are higher than the levels observed at background sites such as Mauna Loa, USA (CO2: 396.8 +/- 2.0 ppm, CH4: 1.831 +/- 0.110 ppm) and Waliguan, China (CO2: 397.7 +/- 3.6 ppm, CH4: 1.879 +/- 0.009 ppm) during the same period and at other urban and semi-urban sites in the region, such as Ahmedabad and Shadnagar (India). They varied slightly across the seasons at Bode, with seasonal average CH4 mixing ratios of 2.157 (+/- 0.230) ppm in the pre-monsoon season, 2.199 (+/- 0.241) ppm in the monsoon, 2.210 (+/- 0.200) ppm in the post-monsoon, and 2.214 (+/- 0.209) ppm in the winter season. The average CO2 mixing ratios were 426.2 (+/- 25.5) ppm in the pre-monsoon, 413.5 (+/- 24.2) ppm in the monsoon, 417.3 (+/- 23.1) ppm in the postmonsoon, and 421.9 (+/- 20.3) ppm in the winter season. The maximum seasonal mean mixing ratio of CH4 in winter was only 0.057 ppm or 2.6% higher than the seasonal minimum during the pre-monsoon period, while CO2 was 12.8 ppm or 3.1% higher during the pre-monsoon period (seasonal maximum) than during the monsoon (seasonal minimum). On the other hand, the CO mixing ratio at Bode was 191% higher during the winter than during the monsoon season. The enhancement in CO2 mixing ratios during the pre-monsoon season is associated with additional CO2 emissions from forest fires and agro-residue burning in northern South Asia in addition to local emissions in the Kathmandu Valley. Published CO = CO2 ratios of different emission sources in Nepal and India were compared with the observed CO = CO2 ratios in this study. This comparison suggested that the major sources in the Kathmandu Valley were residential cooking and vehicle exhaust in all seasons except winter. In winter, brick kiln emissions were a major source. Simultaneous measurements in Bode and Chanban (15 July-3 October 2015) revealed that the mixing ratios of CO2, CH4, and CO were 3.8, 12, and 64% higher in Bode than Chanban. The Kathmandu Valley thus has significant emissions from local sources, which can also be attributed to its bowl-shaped geography that is conducive to pollution build-up. At Bode, all three gas species (CO2, CH4, and CO) showed strong diurnal patterns in their mixing ratios with a pronounced morning peak (ca. 08:00), a dip in the afternoon, and a gradual increase again through the night until the next morning. CH4 and CO at Chanban, however, did not show any noticeable diurnal variations. These measurements provide the first insights into the diurnal and seasonal variation in key greenhouse gases and air pollutants and their local and regional sources, which is important information for atmospheric research in the region. Y1 - 2017 U6 - https://doi.org/10.5194/acp-17-12573-2017 SN - 1680-7316 SN - 1680-7324 VL - 17 IS - 20 SP - 12573 EP - 12596 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Mahata, Khadak Singh A1 - Rupakheti, Maheswar A1 - Panday, Arnico Kumar A1 - Bhardwaj, Piyush A1 - Naja, Manish A1 - Singh, Ashish A1 - Mues, Andrea A1 - Cristofanelli, Paolo A1 - Pudasainee, Deepak A1 - Bonasoni, Paolo A1 - Lawrence, Mark T1 - Observation and analysis of spatiotemporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal JF - Atmosheric chemistry and physics N2 - It was lower during the monsoon due to rainfall, which reduces open burning activities within the valley and in the surrounding regions and thus reduces sources of CO. The meteorology of the valley also played a key role in determining the CO mixing ratios. The wind is calm and easterly in the shallow mixing layer, with a mixing layer height (MLH) of about 250 m, during the night and early morning. The MLH slowly increases after sunrise and decreases in the afternoon. As a result, the westerly wind becomes active and reduces the mixing ratio during the daytime. Furthermore, there was evidence of an increase in the O-3 mixing ratios in the Kathmandu Valley as a result of emissions in the Indo-Gangetic Plain (IGP) region, particularly from biomass burning including agroresidue burning. A top-down estimate of the CO emission flux was made by using the CO mixing ratio and mixing layer height measured at Bode. The estimated annual CO flux at Bode was 4.9 mu g M-2 s(-1), which is 2-14 times higher than that in widely used emission inventory databases (EDGAR HTAP, REAS and INTEX-B). This difference in CO flux between Bode and other emission databases likely arises from large uncertainties in both the top-down and bottom-up approaches to estimating the emission flux. The O-3 mixing ratio was found to be highest during the premonsoon season at all sites, while the timing of the seasonal minimum varied across the sites. The daily maximum 8 h average O-3 exceeded the WHO recommended guideline of 50 ppb on more days at the hilltop station of Nagarkot (159 out of 357 days) than at the urban valley bottom sites of Paknajol (132 out of 354 days) and Bode (102 out of 353 days), presumably due to the influence of free-tropospheric air at the high-altitude site (as also indicated by Putero et al., 2015, for the Paknajol site in the Kathmandu Valley) as well as to titration of O-3 by fresh NOx emissions near the urban sites. More than 78 % of the exceedance days were during the premonsoon period at all sites. The high O-3 mixing ratio observed during the premonsoon period is of a concern for human health and ecosystems, including agroecosystems in the Kathmandu Valley and surrounding regions. Y1 - 2018 U6 - https://doi.org/10.5194/acp-18-14113-2018 SN - 1680-7316 SN - 1680-7324 VL - 18 IS - 19 SP - 14113 EP - 14132 PB - Copernicus CY - Göttingen ER -