TY - JOUR A1 - Kühn, Danilo A1 - Müller, Moritz A1 - Sorgenfrei, Florian A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Ovsyannikov, Ruslan A1 - Martensson, Nils A1 - Sanchez-Portal, Daniel A1 - Föhlisch, Alexander T1 - Directional sub-femtosecond charge transfer dynamics and the dimensionality of 1T-TaS2 JF - Scientific reports N2 - For the layered transition metal dichalcogenide 1T-TaS2, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS2 takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS2. The X-ray spectroscopic core-hole-clock method prepares selectively in-and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS2 planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36637-0 SN - 2045-2322 VL - 9 IS - 488 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kühn, Danilo A1 - Sorgenfrei, Florian A1 - Giangrisostomi, Erika A1 - Jay, Raphael A1 - Musazay, Abdurrahman A1 - Ovsyannikov, Ruslan A1 - Strahlman, Christian A1 - Svensson, Svante A1 - Mårtensson, Nils A1 - Föhlisch, Alexander T1 - Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V. KW - Artof KW - Electron spectroscopy KW - Wide angle KW - Time of flight KW - Energy resolution KW - Synchrotron Y1 - 2018 U6 - https://doi.org/10.1016/j.elspec.2017.06.008 SN - 0368-2048 SN - 1873-2526 VL - 224 SP - 45 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kühn, Danilo A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Sorgenfrei, Florian A1 - Föhlisch, Alexander T1 - The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission JF - New journal of physics : the open-access journal for physics N2 - Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources. KW - space-charge effects KW - mean-field model KW - x-ray photoemission KW - electron spectroscopy KW - pump-probe KW - ARTOF Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab2f5c SN - 1367-2630 VL - 21 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Kühn, Danilo A1 - Sorgenfrei, Florian A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Musazayb, Abdurrahman A1 - Ovsyannikov, Ruslan A1 - Stråhlman, Christian A1 - Svensson, Svante A1 - Mårtensson, Nils A1 - Föhlisch, Alexander T1 - Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 782 KW - Artof KW - electron spectroscopy KW - wide angle KW - time of flight KW - energy resolution KW - synchrotron Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436629 SN - 1866-8372 IS - 782 SP - 45 EP - 50 ER -