TY - JOUR A1 - Zhong, Yufei A1 - Causa, Martina A1 - Moore, Gareth John A1 - Krauspe, Philipp A1 - Xiao, Bo A1 - Günther, Florian A1 - Kublitski, Jonas A1 - BarOr, Eyal A1 - Zhou, Erjun A1 - Banerji, Natalie T1 - Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers JF - Nature Communications N2 - Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff. KW - organic solar cell KW - electron-transfer KW - Donor-Acceptor (DA) interface KW - transfer dynamics KW - donor KW - seperation KW - efficiency KW - impact KW - energy KW - photovoltaics Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-14549-w SN - 2041-1723 VL - 11 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group UK CY - London ER - TY - GEN A1 - Zhong, Yufei A1 - Causa, Martina A1 - Moore, Gareth John A1 - Krauspe, Philipp A1 - Xiao, Bo A1 - Günther, Florian A1 - Kublitski, Jonas A1 - BarOr, Eyal A1 - Zhou, Erjun A1 - Banerji, Natalie T1 - Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1422 KW - organic solar cell KW - electron-transfer KW - Donor-Acceptor (DA) interface KW - transfer dynamics KW - donor KW - seperation KW - efficiency KW - impact KW - energy KW - photovoltaics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-511936 SN - 1866-8372 IS - 1 ER -