TY - GEN A1 - Dolezalova, Barbora A1 - Kubatova, Brankica A1 - Kubat, Jiri A1 - Hamann, Wolf-Rainer T1 - The Quasi-WR Star HD 45166 Revisited T2 - Radiative signatures from the cosmos N2 - We studied the wind of the quasi Wolf-Rayet (qWR) star HD 45166. As a first step we modeled the observed UV spectra of this star by means of the state-of-the-art Potsdam Wolf-Rayet (PoWR) atmosphere code. We inferred the wind parameters and compared them with previous findings. Y1 - 2019 SN - 978-1-58381-925-8 SN - 1050-3390 VL - 519 SP - 197 EP - 200 PB - Astronomical soc pacific CY - San Fransisco ER - TY - JOUR A1 - Aldoretta, E. J. A1 - St-Louis, N. A1 - Richardson, N. D. A1 - Moffat, Anthony F. J. A1 - Eversberg, T. A1 - Hill, G. M. A1 - Shenar, Tomer A1 - Artigau, E. A1 - Gauza, B. A1 - Knapen, J. H. A1 - Kubat, Jiří A1 - Kubatova, Brankica A1 - Maltais-Tariant, R. A1 - Munoz, M. A1 - Pablo, H. A1 - Ramiaramanantsoa, T. A1 - Richard-Laferriere, A. A1 - Sablowski, D. P. A1 - Simon-Diaz, S. A1 - St-Jean, L. A1 - Bolduan, F. A1 - Dias, F. M. A1 - Dubreuil, P. A1 - Fuchs, D. A1 - Garrel, T. A1 - Grutzeck, G. A1 - Hunger, T. A1 - Kuesters, D. A1 - Langenbrink, M. A1 - Leadbeater, R. A1 - Li, D. A1 - Lopez, A. A1 - Mauclaire, B. A1 - Moldenhawer, T. A1 - Potter, M. A1 - dos Santos, E. M. A1 - Schanne, L. A1 - Schmidt, J. A1 - Sieske, H. A1 - Strachan, J. A1 - Stinner, E. A1 - Stinner, P. A1 - Stober, B. A1 - Strandbaek, K. A1 - Syder, T. A1 - Verilhac, D. A1 - Waldschlaeger, U. A1 - Weiss, D. A1 - Wendt, A. T1 - An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134 JF - Monthly notices of the Royal Astronomical Society N2 - During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist. KW - instabilities KW - methods: data analysis KW - techniques: spectroscopic KW - stars: individual: WR 134 KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1188 SN - 0035-8711 SN - 1365-2966 VL - 460 SP - 3407 EP - 3417 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kubatova, Brankica A1 - Szecsi, D. A1 - Sander, Andreas Alexander Christoph A1 - Kubat, Jiří A1 - Tramper, F. A1 - Krticka, Jiri A1 - Kehrig, C. A1 - Hamann, Wolf-Rainer A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Low-metallicity massive single stars with rotation BT - II. Predicting spectra and spectral classes of chemically homogeneously evolving stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Metal-poor massive stars are assumed to be progenitors of certain supernovae, gamma-ray bursts, and compact object mergers that might contribute to the early epochs of the Universe with their strong ionizing radiation. However, this assumption remains mainly theoretical because individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the Small Magellanic Cloud. Aims. Here we explore the predictions of the state-of-the-art theories of stellar evolution combined with those of stellar atmospheres about a certain type of metal-poor (0.02 Z(circle dot)) hot massive stars, the chemically homogeneously evolving stars that we call Transparent Wind Ultraviolet INtense (TWUIN) stars. Methods. We computed synthetic spectra corresponding to a broad range in masses (20 130 M-circle dot) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage. We investigated the influence of mass loss and wind clumping on spectral appearance and classified the spectra according to the Morgan-Keenan (MK) system. Results. We find that TWUIN stars show almost no emission lines during most of their core hydrogen-burning lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission, and even some metal lines (oxygen and carbon, but still almost no nitrogen) are detected. Mass loss and clumping play a significant role in line formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early-O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early-O type star observed in a low-metallicity galaxy could be the result of chemically homogeneous evolution and might therefore be the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe because they are hot without showing prominent emission lines during most of their lifetime. KW - stars: massive KW - stars: winds, outflows KW - stars: rotation KW - galaxies: dwarf KW - radiative transfer Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834360 SN - 1432-0746 SN - 0004-6361 VL - 623 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kubátová, Brankica A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias A1 - Sander, A. A1 - Steinke, M. A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Macroclumping in WR 136 JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Macroclumping proved to resolve the discordance between different mass-loss rate diagnostics for O-type stars, in particular between Hα and the P v resonance lines. In this paper, we report first results from a corresponding investigation for WR stars. We apply our detailed 3-D Monte Carlo (MC) line formation code to the P v resonance doublet and show, for the Galactic WNL star WR136, that macroclumping is require to bring this line in accordance with the mass-loss rate derived from the emission-line spectrum. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87823 SP - 125 EP - 128 ER - TY - JOUR A1 - Oskinova, Lida A1 - Kubatova, Brankica A1 - Hamann, Wolf-Rainer T1 - Moving inhomogeneous envelopes of stars JF - Transport in Porous Media N2 - Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters. (C) 2016 Elsevier Ltd. All rights reserved. KW - Stars: mass-loss KW - Stars: winds KW - Outflows KW - Stars: atmospheres early type Y1 - 2016 U6 - https://doi.org/10.1016/j.jqsrt.2016.06.017 SN - 0022-4073 SN - 1879-1352 VL - 183 SP - 100 EP - 112 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Kubatova, Brankica A1 - Hamann, Wolf-Rainer A1 - Kubat, Jiri A1 - Oskinova, Lida T1 - 3D Monte Carlo Radiative Transfer in Inhomogeneous Massive Star Winds BT - Application to Resonance Line Formation T2 - Radiative signatures from the cosmos N2 - Already for decades it has been known that the winds of massive stars are inhomogeneous (i.e. clumped). To properly model observed spectra of massive star winds it is necessary to incorporate the 3-D nature of clumping into radiative transfer calculations. In this paper we present our full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. We use a set of parameters to describe dense as well as the rarefied wind components. At the same time, we account for non-monotonic velocity fields. We show how the 3-D density and velocity wind inhomogeneities strongly affect the resonance line formation. We also show how wind clumping can solve the discrepancy between P v and H alpha mass-loss rate diagnostics. Y1 - 2019 SN - 978-1-58381-925-8 SN - 1050-3390 VL - 519 SP - 209 EP - 212 PB - Astronomical soc pacific CY - San Fransisco ER -