TY - JOUR A1 - Whiteley, Liam A1 - Haug, Maria A1 - Klein, Kristina A1 - Willmann, Matthias A1 - Bohn, Erwin A1 - Chiantia, Salvatore A1 - Schwarz, Sandra T1 - Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5 JF - PLoS one N2 - Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 ( T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl-beta-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0185715 SN - 1932-6203 VL - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Alleweldt, Ralf A1 - Buyten, Bijan A1 - Gunnarsson, Logi A1 - Klein, Eckart A1 - Kotzur, Markus A1 - Lammers, Lutz A1 - Morris-Take, Berit Kristina A1 - Nägeler, Pascal A1 - Payandeh, Mehrdad A1 - Steiner, Christoph A1 - Weiß, Norman T1 - MenschenRechtsMagazin : Informationen | Meinungen | Analysen N2 - Aus dem Inhalt: Belastung und Arbeitsfähigkeit des Europäischen Gerichtshofs für Menschenrechte: neuere Entwicklungen - Extraterritoriale Anwendbarkeit der Rassendiskriminierungskonvention - Globale Verantwortlichkeit oder traditionelles Souveränitätsdenken – Gründe für die Haltung zur “Responsibility to Protect” von nicht-westlichen Staaten T3 - MenschenRechtsMagazin : MRM ; Informationen, Meinungen, Analysen - 19.2014/2 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78417 SN - 1434-2820 VL - 19 IS - 2 PB - Universitätsverlag Potsdam CY - Potsdam ER -