TY - THES A1 - Schutjajew, Konstantin T1 - Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials T1 - Elektrochemische Natriumspeicherung in nicht-graphitisierbaren Kohlenstoffen - Untersuchungen zu Mechanismen und synthetische Ansätze für die Darstellung von Materialien mit hohen Energiedichten N2 - To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials. N2 - Eine nachhaltige Energiewirtschaft kann nur durch die Abkehr von fossilen Brennstoffen als Energiequellen und den ausschließlichen Einsatz erneuerbarer Quellen für die Energieerzeugung erreicht werden. Da diese jedoch naturgemäß nur diskontinuierlich zur Verfügung stehen und sich die tageszeitliche Verfügbarkeit kaum mit dem Bedarf deckt, muss erneuerbar gewonnene Energie zwischengespeichert werden. Dies kann mittels elektrochemischer Energiespeicher geschehen, wobei sich die Lithium-Ionen-Batterie (LIB) aufgrund ihrer hohen Energiedichte und Effizienz besonders dafür eignet. Da jedoch Ressourcen, welche für entscheidende Zellkomponenten der LIB benötigt werden, knapper werden und oft in geopolitisch komplizierten Regionen vorkommen, muss auch dafür eine Alternative gefunden werden. Die Natrium-Ionen-Batterie (NIB) bietet sich als Nachfolger für LIBs an, da sich die Zellchemie der beiden Systeme ähnelt und somit Kenntnisse direkt aus der LIB-Forschung übernommen werden können. Es erweist sich allerdings als problematisch, dass das kommerziell wichtigste negative Elektrodenmaterial in LIBs, Graphit, nicht für die Anwendung in NIBs eignet und daher eine andere Kohlenstoffmodifikation, sogenannter nicht-graphitisierbarer Kohlenstoff, oder aus dem Englischen hard carbon (HC), verwendet werden muss. HC ist durch eine besondere Art der Fehlordnung geprägt und besteht im Wesentlichen aus Regionen, in denen die Kohlenstoffschichten parallel zueinander verlaufen und aus Regionen, in denen die Schichten innere Hohlräume, sogenannte geschlossene Poren bilden. Die Lade-Entladekurve von HCs ist geprägt von diesen Strukturmerkmalen, sodass sie in einen linear-abflachenden, aus dem Englischen sloping Bereich, und einen Plateaubereich unterteilt werden kann. Die Speicherung im für Energieanwendungen relevanteren Plateaubereich erfolgt durch Abscheidung quasimetallischer Natriumstrukturen in eingangs erwähnten geschlossenen Poren, bei geringen, konstanten Spannungen, wie zahlreiche Forschungsarbeiten unter Berufung auf verschiedene Strukturcharakterisierungsmethoden � uberzeugend nahelegen. Jedoch ist über den Einfluss der Größe und Form der geschlossenen Poren sowie derer chemischer Eigenschaften auf die Natriumspeicherung nur wenig bekannt. Eben diese Fragestellung soll in der vorliegenden Arbeit behandelt werden. Durch die Herstellung von Materialien mit genau definierter und bekannter Morphologie, Porenstruktur sowie chemischer Beschaffenheit wird die Bedeutung dieser Merkmale für die Natriumabscheidung bei geringen Potentialen beleuchtet. Mittels elektrochemischer Impedanzspektroskopie wird desweiteren der Natriumspeichermechanismus detailliert untersucht und die Kinetik der reversiblen Natriumspeicherung mit der der irreversiblen Metallabscheidung verglichen, wobei eine bemerkenswerte Ähnlichkeit der beiden Prozesse zu beobachten ist. Abschließend ist die gezielte Herstellung geschlossenporiger Materialien aus offenporigen Vorläufermaterialien gelungen, welche es nicht nur ermöglicht, geschlossen- und offenporige Materialien ansonsten gleicher Porenstruktur zu vergleichen und die Notwendigkeit geschlossener Poren nachzuweisen, sondern auch die Speicherkapazität und Effizienz der Elektrodenmaterialien zu erhöhen. Insgesamt tragen die im Rahmen der vorliegenden Dissertation gewonnenen Erkenntisse nicht nur zum tiefergehenden Verständnis des Natriumspeichermechanismus in HCs bei, sondern es werden auch synthetische und analytische Methoden vorgestellt, die der weiteren Forschung auf diesem Gebiet dienen werden. KW - sodium-ion batteries KW - energy storage KW - carbon KW - Natrium-Ionen-Akkumulator KW - Energiespeicher KW - Kohlenstoff Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541894 ER - TY - JOUR A1 - Hwang, Jinyeon A1 - Zhang, Wuyong A1 - Youk, Sol A1 - Schutjajew, Konstantin A1 - Oschatz, Martin T1 - Understanding structure-property relationships under experimental conditions for the optimization of lithium-ion capacitor anodes based on all-carbon-composite materials JF - Energy technology : generation, conversion, storage, distribution N2 - The nanoscale combination of a conductive carbon and a carbon-based material with abundant heteroatoms for battery electrodes is a method to overcome the limitation that the latter has high affinity to alkali metal ions but low electronic conductivity. The synthetic protocol and the individual ratios and structures are important aspects influencing the properties of such multifunctional compounds. Their interplay is, herein, investigated by infiltration of a porous ZnO-templated carbon (ZTC) with nitrogen-rich carbon obtained by condensation of hexaazatriphenylene-hexacarbonitrile (HAT-CN) at 550-1000 degrees C. The density of lithiophilic sites can be controlled by HAT-CN content and condensation temperature. Lithium storage properties are significantly improved in comparison with those of the individual compounds and their physical mixtures. Depending on the uniformity of the formed composite, loading ratio and condensation temperature have different influence. Most stable operation at high capacity per used monomer is achieved with a slowly dried composite with an HAT-CN:ZTC mass ratio of 4:1, condensed at 550 degrees C, providing more than 400 mAh g(-1) discharge capacity at 0.1 A g(-1) and a capacity retention of 72% after 100 cycles of operation at 0.5 A g(-1) due to the homogeneity of the composite and high content of lithiophilic sites. KW - anodes KW - hybrid materials KW - nitrogen-doped carbon KW - porous carbon KW - lithium-ion capacitors Y1 - 2021 U6 - https://doi.org/10.1002/ente.202001054 SN - 2194-4296 VL - 9 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ilic, Ivan A1 - Schutjajew, Konstantin A1 - Zhang, Wuyong A1 - Oschatz, Martin T1 - Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes JF - Carbon : an international journal sponsored by the American Carbon Society N2 - Lithium-ion batteries have revolutionized battery technology. However, the scarcity of lithium in nature is driving the search for alternatives. For that reason, sodium-ion batteries have attracted increasing attention in recent years. The main obstacle to their development is the anode as, unlike for lithium-ion batteries, graphite cannot be used due to the inability to form stoichiometrically useful intercalation compounds with sodium. A promising candidate for sodium storage is hard carbon a form of nongraphitisable carbon, that can be synthesized from various precursor materials. Processing of hard carbons is often done by using mechanochemical treatments. Although it is generally accepted and often observed that they can influence the porosity of hard carbons, their effect on battery performance not well understood. Here, the changes in porosity occurring during ball milling are elucidated and related to the properties of hard carbons in sodium storage. Analysis by combined gas physisorption and small angle X-ray scattering shows that porosity changes during ball milling with a significant increase of the open porosity, unsuitable for reversible sodium storage, and decrease of the closed porosity, suitable for reversible sodium storage. While pristine hard carbon can store 58.5 mAh g(-1) in the closed pores, upon 5 h of mechanical treatment in a ball mill it can only store 35.5 mAh g(-1). The obtained results are furthermore pointing towards the disputed "intercalation-adsorption" mechanism. KW - Hard carbons KW - Sodium-ion batteries KW - Anodes KW - Microporosity KW - Ball milling Y1 - 2022 U6 - https://doi.org/10.1016/j.carbon.2021.09.063 SN - 0008-6223 SN - 1873-3891 VL - 186 SP - 55 EP - 63 PB - Elsevier Science CY - Amsterdam [u.a.] ER -