TY - JOUR A1 - Wood, C. C. A1 - Poree, Fabien A1 - Dreyer, Ingo A1 - Koehler, G. J. A1 - Udvardi, M. K. T1 - Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1; 1 N2 - Ammonium is a primary source of N for plants, so knowing how it is transported, stored, and assimilated in plant cells is important for rational approaches to optimise N-use in agriculture. Electrophysiological studies of Arabidopsis AtAMT1;1 expressed in oocytes revealed passive, Delta psi-driven transport of NH4+ through this protein. Expression of AtAMT1;1 in a novel yeast mutant defective in endogenous ammonium transport and vacuolar acidification supported the above mechanism for AtAMT1;1 and revealed a central role for acid vacuoles in storage and retention of ammonia in cells. These results highlight the mechanistic differences between plant AMT proteins and related transporters in bacteria and animal cells, and suggest novel strategies to enhance nitrogen use efficiency in agriculture. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved Y1 - 2006 UR - http://www.sciencedirect.com/science/article/pii/S0014579306007332 U6 - https://doi.org/10.1016/j.febslet.2006.06.026 ER - TY - JOUR A1 - Vorgerd, M. A1 - vanderVen, Peter F. M. A1 - Bruchertseifer, V. A1 - Lowe, T. A1 - Kley, R. A. A1 - Schröder, Rolf A1 - Lochmuller, H. A1 - Himmel, Mirko A1 - Koehler, K. A1 - Fürst, Dieter Oswald A1 - Huebner, A. T1 - A mutation in the dimerization domain of filamin C causes a novel type of autosomal dominant myofibrillar myopathy N2 - Myofibrillar myopathy (MFM) is a human disease that is characterized by focal myofibrillar destruction and pathological cytoplasmic protein aggregations. In an extended German pedigree with a novel form of MFM characterized by clinical features of a limb-girdle myopathy and morphological features of MFM, we identified a cosegregating, heterozygous nonsense mutation (8130G -> A; W2710X) in the filamin c gene ( FLNC) on chromosome 7q32.1. The mutation is the first found in FLNC and is localized in the dimerization domain of filamin c. Functional studies showed that, in the truncated mutant protein, this domain has a disturbed secondary structure that leads to the inability to dimerize properly. As a consequence of this malfunction, the muscle fibers of our patients display massive cytoplasmic aggregates containing filamin c and several Z-disk-associated and sarcolemmal proteins Y1 - 2005 SN - 0002-9297 ER - TY - JOUR A1 - Moser, Othmar A1 - Mader, Julia K. A1 - Tschakert, Gerhard A1 - Mueller, Alexander A1 - Groeschl, Werner A1 - Pieber, Thomas R. A1 - Koehler, Gerd A1 - Messerschmidt, Janin A1 - Hofmann, Peter T1 - Accuracy of Continuous Glucose Monitoring (CGM) during Continuous and High-Intensity Interval Exercise in Patients with Type 1 Diabetes Mellitus JF - Nutrients N2 - Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5% below (L) and above (M) the first lactate turn point (LTP1), and 5% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol.L-1, -0.45 (-3.95, 3.05) mmol.L-1, -0.31 (-8.83, 8.20) mmol.L-1 and at 1.17 (-2.06, 4.40) mmol.L-1, 0.11 (-5.79, 6.01) mmol.L-1, 1.48 (-2.60, 5.57) mmol.L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise. KW - continuous glucose monitoring KW - exercise KW - diabetes KW - blood glucose Y1 - 2016 U6 - https://doi.org/10.3390/nu8080489 SN - 2072-6643 VL - 8 PB - MDPI CY - Basel ER - TY - GEN A1 - Moser, Othmar A1 - Mader, Julia K. A1 - Tschakert, Gerhard A1 - Mueller, Alexander A1 - Groeschl, Werner A1 - Pieber, Thomas R. A1 - Koehler, Gerd A1 - Messerschmidt, Janin A1 - Hofmann, Peter T1 - Accuracy of Continuous Glucose Monitoring (CGM) during continuous and high-intensity interval exercise in patients with Type 1 Diabetes Mellitus N2 - Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5% below (L) and above (M) the first lactate turn point (LTP1), and 5% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (−3.44, 5.15) mmol·L−1, −0.45 (−3.95, 3.05) mmol·L−1, −0.31 (−8.83, 8.20) mmol·L−1 and at 1.17 (−2.06, 4.40) mmol·L−1, 0.11 (−5.79, 6.01) mmol·L−1, 1.48 (−2.60, 5.57) mmol·L−1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 338 KW - continuous glucose monitoring KW - exercise KW - diabetes KW - blood glucose Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400470 ER - TY - JOUR A1 - Banks, Jo Ann A1 - Nishiyama, Tomoaki A1 - Hasebe, Mitsuyasu A1 - Bowman, John L. A1 - Gribskov, Michael A1 - dePamphilis, Claude A1 - Albert, Victor A. A1 - Aono, Naoki A1 - Aoyama, Tsuyoshi A1 - Ambrose, Barbara A. A1 - Ashton, Neil W. A1 - Axtell, Michael J. A1 - Barker, Elizabeth A1 - Barker, Michael S. A1 - Bennetzen, Jeffrey L. A1 - Bonawitz, Nicholas D. A1 - Chapple, Clint A1 - Cheng, Chaoyang A1 - Correa, Luiz Gustavo Guedes A1 - Dacre, Michael A1 - DeBarry, Jeremy A1 - Dreyer, Ingo A1 - Elias, Marek A1 - Engstrom, Eric M. A1 - Estelle, Mark A1 - Feng, Liang A1 - Finet, Cedric A1 - Floyd, Sandra K. A1 - Frommer, Wolf B. A1 - Fujita, Tomomichi A1 - Gramzow, Lydia A1 - Gutensohn, Michael A1 - Harholt, Jesper A1 - Hattori, Mitsuru A1 - Heyl, Alexander A1 - Hirai, Tadayoshi A1 - Hiwatashi, Yuji A1 - Ishikawa, Masaki A1 - Iwata, Mineko A1 - Karol, Kenneth G. A1 - Koehler, Barbara A1 - Kolukisaoglu, Uener A1 - Kubo, Minoru A1 - Kurata, Tetsuya A1 - Lalonde, Sylvie A1 - Li, Kejie A1 - Li, Ying A1 - Litt, Amy A1 - Lyons, Eric A1 - Manning, Gerard A1 - Maruyama, Takeshi A1 - Michael, Todd P. A1 - Mikami, Koji A1 - Miyazaki, Saori A1 - Morinaga, Shin-ichi A1 - Murata, Takashi A1 - Müller-Röber, Bernd A1 - Nelson, David R. A1 - Obara, Mari A1 - Oguri, Yasuko A1 - Olmstead, Richard G. A1 - Onodera, Naoko A1 - Petersen, Bent Larsen A1 - Pils, Birgit A1 - Prigge, Michael A1 - Rensing, Stefan A. A1 - Mauricio Riano-Pachon, Diego A1 - Roberts, Alison W. A1 - Sato, Yoshikatsu A1 - Scheller, Henrik Vibe A1 - Schulz, Burkhard A1 - Schulz, Christian A1 - Shakirov, Eugene V. A1 - Shibagaki, Nakako A1 - Shinohara, Naoki A1 - Shippen, Dorothy E. A1 - Sorensen, Iben A1 - Sotooka, Ryo A1 - Sugimoto, Nagisa A1 - Sugita, Mamoru A1 - Sumikawa, Naomi A1 - Tanurdzic, Milos A1 - Theissen, Guenter A1 - Ulvskov, Peter A1 - Wakazuki, Sachiko A1 - Weng, Jing-Ke A1 - Willats, William W. G. T. A1 - Wipf, Daniel A1 - Wolf, Paul G. A1 - Yang, Lixing A1 - Zimmer, Andreas D. A1 - Zhu, Qihui A1 - Mitros, Therese A1 - Hellsten, Uffe A1 - Loque, Dominique A1 - Otillar, Robert A1 - Salamov, Asaf A1 - Schmutz, Jeremy A1 - Shapiro, Harris A1 - Lindquist, Erika A1 - Lucas, Susan A1 - Rokhsar, Daniel A1 - Grigoriev, Igor V. T1 - The selaginella genome identifies genetic changes associated with the evolution of vascular plants JF - Science N2 - Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes. Y1 - 2011 U6 - https://doi.org/10.1126/science.1203810 SN - 0036-8075 VL - 332 IS - 6032 SP - 960 EP - 963 PB - American Assoc. for the Advancement of Science CY - Washington ER -