TY - JOUR A1 - Christensen, Lise Bech A1 - Schulte-Ladbeck, R. E. A1 - Sanchez, Sebastian F. A1 - Becker, Thomas A1 - Jahnke, Knud A1 - Kelz, A. A1 - Roth, Martin M. A1 - Wisotzki, Lutz T1 - Abundances and kinematics of a candidate sub-damped Lymana galaxy toward PHL 1226 N2 - The spectrum of the quasar PHL 1226 is known to have a strong Mg II and sub-damped Lymanalpha (sub-DLA) absorption line system with N(H I) = (5 +/- 2) x 10(19) cm(-2) at z = 0.1602. Using integral field spectra from the Potsdam Multi Aperture Spectrophotometer (PMAS) we investigate a galaxy at an impact parameter of 6".4 which is most probably responsible for the absorption lines. A fainter galaxy at a similar redshift and a slightly larger distance from the QSO is known to exist, but we assume that the absorption is caused by the more nearby galaxy. From optical Balmer lines we estimate an intrinsic reddening consistent with 0, and a moderate star formation rate of 0.5 M-circle dot yr(-1) is inferred from the Ha luminosity. Using nebular emission line ratios we find a solar oxygen abundance 12 + log (O/H) = 8.7 +/- 0.1 and a solar nitrogen to oxygen abundance ratio log (N/O) = -1.0 +/- 0.2. This abundance is larger than those of all known sub-DLA systems derived from analyses of metal absorption lines in quasar spectra. On the other hand, the properties are compatible with the most metal rich galaxies responsible for strong Mg II absorption systems. These two categories can be reconciled if we assume an abundance gradient similar to local galaxies. Under that assumption we predict abundances 12 + log (O/H) = 7.1 and log (N/O) = -1.9 for the sub-DLA cloud, which is similar to high redshift DLA and sub-DLA systems. We find evidence for a rotational velocity of similar to200 km s(-1) over a length of similar to7 kpc. From the geometry and kinematics of the galaxy we estimate that the absorbing cloud does not belong to a rotating disk, but could originate in a rotating halo Y1 - 2005 ER - TY - JOUR A1 - Barden, Marco A1 - Rix, Hans-Walter A1 - Somerville, Rachel S. A1 - Bell, Eric F. A1 - Häußler, Boris A1 - Peng, Chen Y. A1 - Borch, Andrea A1 - Beckwith, Steven V. W. A1 - Caldwell, John A. R. A1 - Heymans, Catherine A1 - Jahnke, Knud A1 - Jogee, Shardha A1 - McIntosh, Daniel H. A1 - Meisenheimer, Klaus A1 - Sanchez, Sebastian F. A1 - Wisotzki, Lutz A1 - Wolf, C. T1 - GEMS : the surface brightness and surface mass density evolution of disk galaxies N2 - We combine HST imaging from the GEMS ( Galaxy Evolution from Morphologies and SEDs) survey with photometric redshifts from COMBO-17 to explore the evolution of disk-dominated galaxies since z less than or similar to 1.1. The sample is composed of all GEMS galaxies with Sersic indices n < 2.5, derived from fits to the galaxy images. We account fully for selection effects through careful analysis of image simulations; we are limited by the depth of the redshift and HST data to the study of galaxies with M-V less than or similar to -20, or equivalently, log (M/M-circle dot) greater than or similar to 10. We find strong evolution in the magnitude-size scaling relation for galaxies with M-V less than or similar to -20, corresponding to a brightening of similar to 1 mag arcsec(-2) in rest-frame V band by z similar to 1. Yet disks at a given absolute magnitude are bluer and have lower stellar mass-to-light ratios at z similar to 1 than at the present day. As a result, our findings indicate weak or no evolution in the relation between stellar mass and effective disk size for galaxies with log (M/M-circle dot) greater than or similar to 10 over the same time interval. This is strongly inconsistent with the most naive theoretical expectation, in which disk size scales in proportion to the halo virial radius, which would predict that disks are a factor of 2 denser at fixed mass at z similar to 1. The lack of evolution in the stellar mass-size relation is consistent with an "inside-out'' growth of galaxy disks on average (galaxies increasing in size as they grow more massive), although we cannot rule out more complex evolutionary scenarios Y1 - 2005 ER - TY - JOUR A1 - Kuhlbrodt, B. A1 - Orndahl, E. A1 - Wisotzki, Lutz A1 - Jahnke, Knud T1 - High-redshift quasar host galaxies with adaptive optics N2 - We present K band adaptive optics observations of three high-redshift ( z similar to 2.2) high-luminosity quasars, all of which were studied for the first time. We also observed several point spread function ( PSF) calibrators, non-simultaneously because of the small field of view. The significant temporal PSF variations on timescales of minutes inhibited a straightforward scaled PSF removal from the quasar images. Characterising the degree of PSF concentration by the radii encircling 20% and 80% of the total flux, respectively, we found that even under very different observing conditions the r(20) vs. r(80) relation varied coherently between individual short exposure images, delineating a well-defined relation for point sources. Placing the quasar images on this relation, we see indications that all three objects were resolved. We designed a procedure to estimate the significance of this result, and to estimate host galaxy parameters, by reproducing the statistical distribution of the individual short exposure images. We find in all three cases evidence for a luminous host galaxy, with a mean absolute magnitude of M-R = - 27.0 and scale lengths around similar to 4 - 12 kpc. Together with a rough estimate of the central black hole masses obtained from C.. line widths, the location of the objects on the bulge luminosity vs. black hole mass relation is not significantly different from the low-redshift regime, assuming only passive evolution of the host galaxy. Corresponding Eddington luminosities are L-nuc/L-Edd similar to 0.1 - 0.6 Y1 - 2005 SN - 0004-6361 ER -