TY - JOUR A1 - Cheng, Xin A1 - Kliem, Bernhard A1 - Ding, Mingde T1 - Unambiguous evidence of filament splitting-induced partial eruptions JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter. KW - Sun: magnetic fields KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aab08d SN - 0004-637X SN - 1538-4357 VL - 856 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Xue, Zhike A1 - Yan, Xiaoli A1 - Cheng, Xin A1 - Yang, Liheng A1 - Su, Yingna A1 - Kliem, Bernhard A1 - Zhang, Jun A1 - Liu, Zhong A1 - Bi, Yi A1 - Xiang, Yongyuan A1 - Yang, Kai A1 - Zhao, Li T1 - Observing the release of twist by magnetic reconnection in a solar filament eruption JF - Nature Communications N2 - Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11837 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Cheng, Xin A1 - Zhang, Jie A1 - Kliem, Bernhard A1 - Török, Tibor A1 - Xing, Chen A1 - Zhou, Zhenjun A1 - Inhester, Bernd A1 - Ding, Mingde T1 - Initiation and early kinematic evolution of solar eruptions T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1420 KW - solar coronal mass ejections KW - stellar coronal mass ejections KW - solar storm Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519720 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Cheng, Xin A1 - Zhang, Jie A1 - Kliem, Bernhard A1 - Török, Tibor A1 - Xing, Chen A1 - Zhou, Zhenjun A1 - Inhester, Bernd A1 - Ding, Mingde T1 - Initiation and early kinematic evolution of solar eruptions JF - The Astrophysical Journal N2 - We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration. KW - solar coronal mass ejections KW - stellar coronal mass ejections KW - solar storm Y1 - 2020 U6 - https://doi.org/10.3847/1538-4357/ab886a SN - 1055-6796 SN - 1476-3540 VL - 894 IS - 2 SP - 1 EP - 20 PB - Cambridge Scientific Publishers CY - Cambridge ER -