TY - JOUR A1 - Arias-Andres, Maria A1 - Rojas-Jimenez, Keilor A1 - Grossart, Hans-Peter T1 - Collateral effects of microplastic pollution on aquatic microorganisms BT - An ecological perspective JF - Trends in Analytical Chemistry N2 - Microplastics (MP) provide a unique and extensive surface for microbial colonization in aquatic ecosystems. The formation of microorganism-microplastic complexes, such as biofilms, maximizes the degradation of organic matter and horizontal gene transfer. In this context, MP affect the structure and function of microbial communities, which in turn render the physical and chemical fate of MP. This new paradigm generates challenges for microbiology, ecology, and ecotoxicology. Dispersal of MP is concomitant with that of their associated microorganisms and their mobile genetic elements, including antibiotic resistance genes, islands of pathogenicity, and diverse metabolic pathways. Functional changes in aquatic microbiomes can alter carbon metabolism and food webs, with unknown consequences on higher organisms or human microbiomes and hence health. Here, we examine a variety of effects of MP pollution from the microbial ecology perspective, whose repercussions on aquatic ecosystems begin to be unraveled. (C) 2018 Elsevier B.V. All rights reserved. KW - Microplastics (MP) KW - Biofilms KW - HGT KW - Microbial ecology KW - Carbon cycling KW - Aquatic ecosystems KW - Health risk assessment Y1 - 2018 U6 - https://doi.org/10.1016/j.trac.2018.11.041 SN - 0165-9936 SN - 1879-3142 VL - 112 SP - 234 EP - 240 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Großart, Hans-Peter A1 - Rojas-Jimenez, Keilor T1 - Aquatic fungi: targeting the forgotten in microbial ecology JF - Current opinion in microbiology N2 - Fungi constitute important and conspicuous components of aquatic microbial communities, but their diversity and functional roles remain poorly characterized. New methods and conceptual frameworks are required to accurately describe their ecological roles, involvement in global cycling processes, and utility for human activities, considering both cultivation independent techniques as well as experiments in laboratory and in natural ecosystems. Here we highlight recent developments and extant knowledge gaps in aquatic mycology, and provide a conceptual model to expose the importance of fungi in aquatic food webs and related biogeochemical processes. Y1 - 2016 U6 - https://doi.org/10.1016/j.mib.2016.03.016 SN - 1369-5274 SN - 1879-0364 VL - 31 SP - 140 EP - 145 PB - Elsevier CY - London ER - TY - JOUR A1 - Frenken, Thijs A1 - Alacid, Elisabet A1 - Berger, Stella A. A1 - Bourne, Elizabeth Charlotte A1 - Gerphagnon, Melanie A1 - Großart, Hans-Peter A1 - Gsell, Alena S. A1 - Ibelings, Bas W. A1 - Kagami, Maiko A1 - Kupper, Frithjof C. A1 - Letcher, Peter M. A1 - Loyau, Adeline A1 - Miki, Takeshi A1 - Nejstgaard, Jens C. A1 - Rasconi, Serena A1 - Rene, Albert A1 - Rohrlack, Thomas A1 - Rojas-Jimenez, Keilor A1 - Schmeller, Dirk S. A1 - Scholz, Bettina A1 - Seto, Kensuke A1 - Sime-Ngando, Telesphore A1 - Sukenik, Assaf A1 - Van de Waal, Dedmer B. A1 - Van den Wyngaert, Silke A1 - Van Donk, Ellen A1 - Wolinska, Justyna A1 - Wurzbacher, Christian A1 - Agha, Ramsy T1 - Integrating chytrid fungal parasites into plankton ecology: research gaps and needs JF - Environmental microbiology N2 - Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13827 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 3802 EP - 3822 PB - Wiley CY - Hoboken ER -