TY - THES A1 - Kegelmann, Lukas T1 - Advancing charge selective contacts for efficient monolithic perovskite-silicon tandem solar cells T1 - Entwicklung Ladungsselektiver Kontakte für Effiziente Monolithische Perowskit-Silizium Tandem-Solarzellen N2 - Hybrid organic-inorganic perovskites are one of the most promising material classes for photovoltaic energy conversion. In solar cells, the perovskite absorber is sandwiched between n- and p-type contact layers which selectively transport electrons and holes to the cell’s cathode and anode, respectively. This thesis aims to advance contact layers in perovskite solar cells and unravel the impact of interface and contact properties on the device performance. Further, the contact materials are applied in monolithic perovskite-silicon heterojunction (SHJ) tandem solar cells, which can overcome the single junction efficiency limits and attract increasing attention. Therefore, all contact layers must be highly transparent to foster light harvesting in the tandem solar cell design. Besides, the SHJ device restricts processing temperatures for the selective contacts to below 200°C. A comparative study of various electron selective contact materials, all processed below 180°C, in n-i-p type perovskite solar cells highlights that selective contacts and their interfaces to the absorber govern the overall device performance. Combining fullerenes and metal-oxides in a TiO2/PC60BM (phenyl-C60-butyric acid methyl ester) double-layer contact allows to merge good charge extraction with minimized interface recombination. The layer sequence thereby achieved high stabilized solar cell performances up to 18.0% and negligible current-voltage hysteresis, an otherwise pronounced phenomenon in this device design. Double-layer structures are therefore emphasized as a general concept to establish efficient and highly selective contacts. Based on this success, the concept to combine desired properties of different materials is transferred to the p-type contact. Here, a mixture of the small molecule Spiro-OMeTAD [2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluoren] and the doped polymer PEDOT [poly(3,4-ethylenedioxythiophene)] is presented as a novel hole selective contact. PEDOT thereby remarkably suppresses charge recombination at the perovskite surface, allowing an increase of quasi-Fermi level splitting in the absorber. Further, the addition of Spiro-OMeTAD into the PEDOT layer is shown to enhance charge extraction at the interface and allow high efficiencies up to 16.8%. Finally, the knowledge on contact properties is applied to monolithic perovskite-SHJ tandem solar cells. The main goal is to optimize the top contact stack of doped Spiro-OMeTAD/molybdenum oxide(MoOx)/ITO towards higher transparency by two different routes. First, fine-tuning of the ITO deposition to mitigate chemical reduction of MoOx and increase the transmittance of MoOx/ITO stacks by 25%. Second, replacing Spiro-OMeTAD with the alternative hole transport materials PEDOT/Spiro-OMeTAD mixtures, CuSCN or PTAA [poly(triaryl amine)]. Experimental results determine layer thickness constrains and validate optical simulations, which subsequently allow to realistically estimate the respective tandem device performances. As a result, PTAA represents the most promising replacement for Spiro-OMeTAD, with a projected increase of the optimum tandem device efficiency for the herein used architecture by 2.9% relative to 26.5% absolute. The results also reveal general guidelines for further performance gains of the technology. N2 - Hybride, organisch-anorganische Perowskite gelten als eine der vielversprechendsten Materialklassen für die photovoltaische Energieumwandlung. Dazu werden Perowskit-Absorber in Solarzellen zwischen n- und p-Typ Kontaktschichten angeordnet, die Elektronen oder Löcher selektiv zur Kathode bzw. Anode der Zelle transportieren. Ziel dieser Arbeit ist es, die ladungsselektiven Transportschichten in Perowskit-Solarzellen zu verbessern und Einflüsse der Grenzflächen- und Kontakteigenschaften auf die Zelleffizienz herauszustellen. Darüber hinaus werden die selektiven Schichten in monolithischen Perowskit-Silizium-Heterokontakt (SHK) Tandem-Solarzellen eingesetzt. Diese können höhere Wirkungsgrade als Einfachsolarzellen erzielen und erfahren zunehmende Aufmerksamkeit aus der Forschung. Hierfür müssen alle Kontaktschichten hochtransparent sein, um eine möglichst effiziente Lichtausnutzung im Tandem-Solarzellen-Design zu erzielen. Des Weiteren limitiert die SHK-Solarzelle die höchst mögliche Temperatur zur Abscheidung der selektiven Kontakte auf 200°C. In einer Vergleichsstudie werden deshalb zunächst verschiedene elektronenselektive Kontaktmaterialien, die alle unter 180°C prozessiert werden, in n-i-p-Typ Perowskit-Solarzellen eingesetzt. Es zeigt sich hierbei, wie wesentlich die selektiven Kontakte und ihre Grenzflächen zum Absorber die Effizienz der Solarzellen bestimmen. Eine Kombination aus Fulleren und Metalloxid in einem TiO2/PC60BM (Phenyl-C60-Buttersäuremethylester) Doppelschichtkontakt ermöglicht dabei eine besonders gute Ladungsextraktion und stark reduzierte Grenzflächenrekombination. Die Materialzusammenstellung erreicht in der Studie hohe stabilisierte Solarzellenwirkungsgrade bis zu 18,0% und eine vernachlässigbare Strom-Spannungs-Hysterese, ein üblicherweise ausgeprägtes Phänomen in diesem Zellaufbau. Das Ergebnis stellt Doppelschicht-Strukturen als generelles Konzept zur Herstellung effizienter und hochselektiver Kontakte heraus. Basierend auf diesem Erfolg wird das Konzept, Eigenschaften verschiedener Materialien miteinander zu kombinieren, anschließend auf den p-Typ Kontakt übertragen. Dazu wird ein neuartiger lochselektiver Kontakt vorgestellt, bestehend aus einer Mischung des kleinen Moleküls Spiro-OMeTAD [2,2‘7,7‘-tetrakis(N,N-di-p-methoxyphenylamin)-9,9‘-spirobifluoren] und dem dotierten Polymer PEDOT [poly(3,4-ethylendioxythiophen)]. PEDOT unterdrückt dabei bemerkenswerter Weiße die Ladungsträgerrekombination an der Perowskit-Grenzfläche, wodurch eine Erhöhung der Quasi-Fermi-Niveau-Aufspaltung im Absorber erzielt wird. Weiterhin wird gezeigt, dass die Zugabe von Spiro-OMeTAD in die PEDOT-Schicht die Lochextraktion an der Grenzfläche verbessert und folglich hohe Solarzellenwirkungsgrade von bis zu 16,8% ermöglicht. Schließlich wird das gewonnene Wissen über die Bedeutung der Kontakt- und Grenzflächeneigenschaften auf monolithische Perowskit-SHK-Tandemsolarzellen angewandt. Das Hauptziel dabei ist die Optimierung des oberen Kontaktstapels, bestehend aus dotiertem Spiro-OMeTAD/Molybdän Oxid (MoOx)/ITO, hin zu verbesserter Transparenz. Zwei verschiedene Ansätze werden hierzu verfolgt. Erstens, durch Feinanpassung der ITO-Abscheidung kann eine chemische Reduktion von MoOx verringert und die Transmission von MoOx/ITO-Schichtstapeln um 25% erhöht werden. Zweitens: Durch Ersetzen des Spiro-OMeTAD mit alternativen, transparenteren Lochtransportmaterialien sollen parasitäre Absorptionsverluste vermieden werden. Als potentielle Lochkontakte werden dabei PEDOT/Spiro-OMeTAD-Mischungen, CuSCN und PTAA [Poly(triarylamin)] analysiert. Experimentelle Untersuchungen liefern optimierte Dicken der Lochkontakt und MoOx Schichten und dienen der Validierung optischer Simulationen der Schichtstapel. Dies erlaubt im Folgenden eine realistische Abschätzung der maximal erreichbaren Tandemsolarzelleneffizienzen. Dabei stellt PTAA den vielversprechendsten Ersatz für Spiro-OMeTAD dar, mit einer prognostizierten Erhöhung des erreichbaren Tandem-Solarzellenwirkungsgrad um 2,9% relativ auf 26,5% absolut. Die Ergebnisse stellen zudem einen Leitfaden zur weiteren Effizienzsteigerung der Tandemsolarzellen-Technologie dar. KW - perovskite KW - silicon KW - tandem solar cell KW - interface engineering KW - contact layers KW - Perowskit KW - Silizium KW - Tandem-Solarzelle KW - Interface-Engineering KW - Kontaktschichten Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426428 ER - TY - JOUR A1 - Kegelmann, Lukas A1 - Wolff, Christian Michael A1 - Awino, Celline A1 - Lang, Felix A1 - Unger, Eva L. A1 - Korte, Lars A1 - Dittrich, Thomas A1 - Neher, Dieter A1 - Rech, Bernd A1 - Albrecht, Steve T1 - It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis JF - ACS applied materials & interfaces N2 - Solar cells made from inorganic organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 degrees C is presented. The inorganic metal oxides TiO2 and SnO2, the organic fullerene derivatives C-60, PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop, the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO2, which shows a more prominent influence of defect states. Transient photoluminescence studies together with current voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO2/PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells. KW - perovskite solar cell KW - electron contact KW - double-layer KW - regular planar architecture KW - hysteresis KW - fullerene KW - metal oxide Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b00900 SN - 1944-8244 VL - 9 SP - 17246 EP - 17256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kegelmann, Lukas A1 - Tockhorn, Philipp A1 - Wolff, Christian Michael A1 - Márquez, José A. A1 - Caicedo Dávila, Sebastián A1 - Korte, Lars A1 - Unold, Thomas A1 - Loevenich, Wilfried A1 - Neher, Dieter A1 - Rech, Bernd A1 - Albrecht, Steve T1 - Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells JF - ACS applied materials & interfaces N2 - Doped spiro-OMeTAD at present is the most commonly used hole transport material (HTM) in n-i-p-type perovskite solar cells, enabling high efficiencies around 22%. However, the required dopants were shown to induce nonradiative recombination of charge carriers and foster degradation of the solar cell. Here, in a novel approach, highly conductive and inexpensive water-free poly(3,4-ethylenedioxythiophene) (PEDOT) is used to replace these dopants. The resulting spiro-OMeTAD/PEDOT (SpiDOT) mixed films achieve higher lateral conductivities than layers of doped spiro-OMeTAD. Furthermore, combined transient and steady-state photoluminescence studies reveal a passivating effect of PEDOT, suppressing nonradiative recombination losses at the perovskite/HTM interface. This enables excellent quasi-Fermi level splitting values of up to 1.24 eV in perovskite/SpiDOT layer stacks and high open-circuit voltages (V-OC) up to 1.19 V in complete solar cells. Increasing the amount of dopant-free spiro-OMeTAD in SpiDOT layers is shown to enhance hole extraction and thereby improves the fill factor in solar cells. As a consequence, stabilized efficiencies up to 18.7% are realized, exceeding cells with doped spiro-OMeTAD as a HTM in this study. Moreover, to the best of our knowledge, these results mark the lowest nonradiative recombination loss in the V-OC (140 mV with respect to the Shockley-Queisser limit) and highest efficiency reported so far for perovskite solar cells using PEDOT as a HTM. KW - perovskite solar cell KW - selective contact KW - spiro-OMeTAD KW - PEDOT KW - recombination KW - passivation KW - quasi-Fermi level splitting Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01332 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 9 SP - 9172 EP - 9181 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Nordmann, Joleik A1 - Zhang, Shanshan A1 - Rothhardt, Daniel A1 - Hörmann, Ulrich A1 - Amir, Yohai A1 - Redinger, Alex A1 - Kegelmann, Lukas A1 - Zu, Fengshuo A1 - Albrecht, Steve A1 - Koch, Norbert A1 - Kirchartz, Thomas A1 - Saliba, Michael A1 - Unold, Thomas A1 - Neher, Dieter T1 - The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells JF - Energy & environmental science N2 - Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9ee02020a SN - 1754-5692 SN - 1754-5706 VL - 12 IS - 9 SP - 2778 EP - 2788 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Jošt, Marko A1 - Albrecht, Steve A1 - Kegelmann, Lukas A1 - Wolff, Christian Michael A1 - Lang, Felix A1 - Lipovšek, Benjamin A1 - Krč, Janez A1 - Korte, Lars A1 - Neher, Dieter A1 - Rech, Bernd A1 - Topič, Marko T1 - Efficient light management by textured nanoimprinted layers for perovskite solar cells JF - ACS photonics N2 - Inorganic-organic perovskites like methylammonium-lead-iodide have proven to be an effective class of 17 materials for fabricating efficient solar cells. To improve their performance, light management techniques using textured surfaces, similar to those used in established solar cell technologies, should be considered. Here, we apply a light management foil created by UV nanoimprint lithography on the glass side of an inverted (p-i-n) perovskite solar cell with 16.3% efficiency. The obtained 1 mA cm(-2) increase in the short-circuit current density translates to a relative improvement in cell performance of 5%, which results in a power conversion efficiency of 17.1%. Optical 3D simulations based on experimentally obtained parameters were used to support the experimental findings. A good match between the simulated and experimental data was obtained, validating the model. Optical simulations reveal that the main improvement in device performance is due to a reduction in total reflection and that relative improvement in the short-circuit current density of up to 10% is possible for large-area devices. Therefore, our results present the potential of light management foils for improving the device performance of perovskite solar cells and pave the way for further use of optical simulations in the field of perovskite solar cells. KW - perovskite solar cells KW - antireflection KW - light management KW - UV nanoimprint lithography KW - optical simulations Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.7b00138 SN - 2330-4022 VL - 4 SP - 1232 EP - 1239 PB - American Chemical Society CY - Washington ER -