TY - JOUR A1 - Heidbach, Oliver A1 - Rajabi, Mojtaba A1 - Cui, Xiaofeng A1 - Fuchs, Karl A1 - Mueller, Birgit A1 - Reinecker, John A1 - Reiter, Karsten A1 - Tingay, Mark A1 - Wenzel, Friedemann A1 - Xie, Furen A1 - Ziegler, Moritz O. A1 - Zoback, Mary-Lou A1 - Zoback, Mark T1 - The World Stress Map database release 2016 BT - Crustal stress pattern across scales JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Knowledge of the present-day crustal in-situ stress field is a key for the understanding of geodynamic processes such as global plate tectonics and earthquakes. It is also essential for the management of geo-reservoirs and underground storage sites for energy and waste. Since 1986, the World Stress Map (WSM) project has systematically compiled the orientation of maximum horizontal stress (S-Hmax). For the 30th anniversary of the project, the WSM database has been updated significantly with 42,870 data records which is double the amount of data in comparison to the database release in 2008. The update focuses on areas with previously sparse data coverage to resolve the stress pattern on different spatial scales. In this paper, we present details of the new WSM database release 2016 and an analysis of global and regional stress pattern. With the higher data density, we can now resolve stress pattern heterogeneities from plate-wide to local scales. In particular, we show two examples of 40 degrees-60 degrees S-Hmax rotations within 70 km. These rotations can be used as proxies to better understand the relative importance of plate boundary forces that control the long wave-length pattern in comparison to regional and local controls of the crustal stress state. In the new WSM project phase IV that started in 2017, we will continue to further refine the information on the S-Hmax orientation and the stress regime. However, we will also focus on the compilation of stress magnitude data as this information is essential for the calibration of geomechanical-numerical models. This enables us to derive a 3-D continuous description of the stress tensor from point-wise and incomplete stress tensor information provided with the WSM database. Such forward models are required for safety aspects of anthropogenic activities in the underground and for a better understanding of tectonic processes such as the earthquake cycle. KW - Tectonic stress KW - Database KW - Stress tensor KW - Geomechanical modelling Y1 - 2018 U6 - https://doi.org/10.1016/j.tecto.2018.07.007 SN - 0040-1951 SN - 1879-3266 VL - 744 SP - 484 EP - 498 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reiter, Karsten A1 - Heidbach, Oliver T1 - 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada) JF - Solid earth N2 - In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical-numerical model (700 km x 1200 km x 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 S-Hmax) as well as stress magnitude data (981 S-V, 1720 S-hmin and 2 (+11) S-Hmax) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes. Y1 - 2014 U6 - https://doi.org/10.5194/se-5-1123-2014 SN - 1869-9510 SN - 1869-9529 VL - 5 IS - 2 SP - 1123 EP - 1149 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Reiter, Karsten A1 - Heidbach, Oliver A1 - Schmitt, Douglas A1 - Haug, Kristine A1 - Ziegler, Moritz O. A1 - Moeck, Inga T1 - A revised crustal stress orientation database for Canada JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The Canadian database on contemporary crustal stress has not been revised systematically in the past two decades. Here we present the results of our new compilation that contains 514 new data records for the orientation data of maximum compressive horizontal stress and 188 data records that were re-assessed. In total the Canadian stress database has now 1667 data records, which is an increase of about 45%. From these data, a new Canadian Stress map as well as one for the Province of Alberta is presented. To analyse the stress pattern, we use the quasi median on the circle as a smoothing algorithm that generates a smoothed stress map of the maximum compressive horizontal stress orientation on a regular grid. The newly introduced quasi interquartile range on the circle estimates the spreading of the data and is used as a measure for the wave-length of the stress pattern. The result of the hybrid wavelength analysis confirms that long spatial wavelength stress patterns (>= 1000 km) exist in large areas in Canada. The observed stress pattern is transmitted through the intra-plate regions. The results reveal that shorter spatial wave length variation of the maximum compressive horizontal stress orientation of less than 200 km, prevails particularly in south-eastern and western Canada. Regional stress sources such as density contrasts, active fault systems, crustal structures, etc. might have a significant impact in these regions. In contrast to these variations, the observed stress pattern in the Alberta Basin is very homogeneous and mainly controlled by plate boundary forces and body forces. The influence of curvature of the Rocky Mountains salient in southern Alberta is minimal. The present-day horizontal stress orientations determined herein have important implications for the production of hydrocarbons and geothermal energy in the Alberta Basin. (C) 2014 Elsevier B.V. All rights reserved. KW - Stress pattern KW - Tectonic stress KW - Canada KW - Alberta KW - Database KW - Circular statistics Y1 - 2014 U6 - https://doi.org/10.1016/j.tecto.2014.08.006 SN - 0040-1951 SN - 1879-3266 VL - 636 SP - 111 EP - 124 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Hergert, T. A1 - Heidbach, Oliver A1 - Reiter, Karsten A1 - Giger, S. B. A1 - Marschall, P. T1 - Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The stress field at depth is a relevant parameter for the design of subsurface constructions and reservoir management. Yet the distortion of the regional stress field due to local-scale features such as sedimentary and tectonic structures or topography is often poorly constrained. We conduct a stress sensitivity analysis using 3-D numerical geomechanical modelling with an elasto-plastic material law to explore the impact of such site-specific features on the stress field in a sedimentary sequence of the Swiss Alpine foreland. The model's dimensions are 14 x 14 x 3 km(3) and it contains 10 units with different mechanical properties, intersected by two regional fault zones. An initial stress state is established involving a semi-empirical relationship between the ratio of horizontal to vertical stress and the overconsolidation ratio of argillaceous sediments. The model results indicate that local topography can affect the stress field significantly to depths greater than the relief contrasts at the surface, especially in conjunction with horizontal tectonic loading. The complexity and frictional properties of faults are also relevant. The greatest variability of the stress field arises across the different sedimentary units. Stress magnitudes and stress anisotropy are much larger in stiffer formations such as massive limestones than in softer argillaceous formations. The stiffer formations essentially carry the load of the far-field forces and are therefore more sensitive to changes of the boundary conditions. This general characteristic of stress distribution in the stiff and soft formations is broadly maintained also with progressive loading towards the plastic limit. The stress field in argillaceous sediments within a stack of formations with strongly contrasting mechanical properties like in the Alpine foreland appears to be relatively insensitive to changes in the tectonic boundary conditions and is largely controlled by the maximum stiffness contrast with respect to the load-bearing formations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 522 KW - in-situ stress KW - Appalachian plateau KW - insitu stress KW - map project KW - basin KW - fault KW - perturbations KW - evolution KW - Jura KW - topography Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409600 SN - 1866-8372 IS - 522 ER - TY - THES A1 - Reiter, Karsten T1 - Crustal stress variability across spatial scales - examples from Canada, Northern Switzerland and a South African gold mine T1 - Die Variabilität der krustalen Spannungen auf räumlichen unterschiedlichen Skalen – Beispiele von Kanada, der Nordschweiz und einer Südafrikanischen Goldmine N2 - The quantitative descriptions of the state of stress in the Earth’s crust, and spatial-temporal stress changes are of great importance in terms of scientific questions as well as applied geotechnical issues. Human activities in the underground (boreholes, tunnels, caverns, reservoir management, etc.) have a large impact on the stress state. It is important to assess, whether these activities may lead to (unpredictable) hazards, such as induced seismicity. Equally important is the understanding of the in situ stress state in the Earth’s crust, as it allows the determination of safe well paths, already during well planning. The same goes for the optimal configuration of the injection- and production wells, where stimulation for artificial fluid path ways is necessary. The here presented cumulative dissertation consists of four separate manuscripts, which are already published, submitted or will be submitted for peer review within the next weeks. The main focus is on the investigation of the possible usage of geothermal energy in the province Alberta (Canada). A 3-D geomechanical–numerical model was designed to quantify the contemporary 3-D stress tensor in the upper crust. For the calibration of the regional model, 321 stress orientation data and 2714 stress magnitude data were collected, whereby the size and diversity of the database is unique. A calibration scheme was developed, where the model is calibrated versus the in situ stress data stepwise for each data type and gradually optimized using statistically test methods. The optimum displacement on the model boundaries can be determined by bivariate linear regression, based on only three model runs with varying deformation ratio. The best-fit model is able to predict most of the in situ stress data quite well. Thus, the model can provide the full stress tensor along any chosen virtual well paths. This can be used to optimize the orientation of horizontal wells, which e.g. can be used for reservoir stimulation. The model confirms regional deviations from the average stress orientation trend, such as in the region of the Peace River Arch and the Bow Island Arch. In the context of data compilation for the Alberta stress model, the Canadian database of the World Stress Map (WSM) could be expanded by including 514 new data records. This publication of an update of the Canadian stress map after ~20 years with a specific focus on Alberta shows, that the maximum horizontal stress (SHmax) is oriented southwest to northeast over large areas in Northern America. The SHmax orientation in Alberta is very homogeneous, with an average of about 47°. In order to calculate the average SHmax orientation on a regular grid as well as to estimate the wave-length of stress orientation, an existing algorithm has been improved and is applied to the Canadian data. The newly introduced quasi interquartile range on the circle (QIROC) improves the variance estimation of periodic data, as it is less susceptible to its outliers. Another geomechanical–numerical model was built to estimate the 3D stress tensor in the target area ”Nördlich Lägern” in Northern Switzerland. This location, with Opalinus clay as a host rock, is a potential repository site for high-level radioactive waste. The performed modelling aims to investigate the sensitivity of the stress tensor on tectonic shortening, topography, faults and variable rock properties within the Mesozoic sedimentary stack, according to the required stability needed for a suitable radioactive waste disposal site. The majority of the tectonic stresses caused by the far-field shortening from the South are admitted by the competent rock units in the footwall and hanging wall of the argillaceous target horizon, the Upper Malm and Upper Muschelkalk. Thus, the differential stress within the host rock remains relatively low. East-west striking faults release stresses driven by tectonic shortening. The purely gravitational influence by the topography is low; higher SHmax magnitudes below topographical depression and lower values below hills are mainly observed near the surface. A complete calibration of the model is not possible, as no stress magnitude data are available for calibration, yet. The collection of this data will begin in 2015; subsequently they will be used to adjust the geomechanical–numerical model again. The third geomechanical–numerical model investigates the stress variation in an ultra-deep gold mine in South Africa. This reservoir model is spatially one order of magnitude smaller than the previous local model from Northern Switzerland. Here, the primary focus is to investigate the hypothesis that the Mw 1.9 earthquake on 27 December 2007 was induced by stress changes due to the mining process. The Coulomb failure stress change (DeltaCFS) was used to analyse the stress change. It confirmed that the seismic event was induced by static stress transfer due to the mining progress. The rock was brought closer to failure on the derived rupture plane by stress changes of up to 1.5–15MPa, in dependence of the DeltaCFS analysis type. A forward modelling of a generic excavation scheme reveals that with decreasing distance to the dyke the DeltaCFS values increase significantly. Hence, even small changes in the mining progress can have a significant impact on the seismic hazard risk, i.e. the change of the occurrence probability to induce a seismic event of economic concern. N2 - Die quantitative Beschreibung des Spannungszustandes in der Erdkruste sowie dessen räumlichzeitliche Änderung ist von großer Bedeutung für wissenschaftliche Fragestellungen, sowie für industrielle Anwendung im geotechnischen Bereich. Bei jedem Eingriff des Menschen in den Untergrund (Bohrungen, Tunnel, Kavernen, Reservoirmanagement etc.) wird der Spannungszustand verändert. Entscheidend ist dabei, ob davon möglicherweise (unvorhersehbare) Gefahren, wie zum Beispiel induzierte Seismizität ausgehen können. Genauso wichtig ist auch ein Verständnis des ungestörten Spannungszustandes in der Erdkruste, um zum Beispiel sichere Bohrlochpfade bereits in der Planungsphase zu bestimmen. Selbiges gilt für eine optimale Konfiguration von Injektions- und Produktionsbohrung, wenn künstliche Fluidwegsamkeiten stimuliert werden müssen. Die vorliegende kumulative Dissertation besteht aus vier Manuskripten, welche teilweise bereits publiziert sind. Fokus der beiden ersten Publikationen ist die potentielle Nutzung von Geothermie in der Provinz Alberta (Kanada). Dafür wurde ein 3-D-geomechanisch-numerisches Modell erstellt, das den kompletten gegenwärtigen 3-D-Spannungstensor in der oberen Erdkruste quantifiziert. Für die Kalibrierung des regionalen Modells wurde ein Datensatz von 321 Spannungsorientierungen und 2714 Spannungsmagnituden zusammengetragen, dessen Größe und Diversität einmalig ist. Aufgrund der vorhandenen Datenbasis wurde ein Kalibrierungsschema entwickelt, bei dem das Modell statistisch abgesichert an jedem einzelnen vorhandenen Datentyp schrittweise getestet und optimiert wird. Das optimale Verhältnis der Randbedingungen des Modells kann dabei durch bivariate lineare Regression, auf der Basis von nur drei Modellläufen bestimmt werden. Das Best-fit-Modell kann den Großteil der in situ Spannungsdaten sehr gut reproduzieren. So kann das Modell den 3-D-Spannungstensor entlang beliebiger virtueller Bohrlochpfade liefern, die zum Beispiel für die Planung der optimalen Orientierung horizontaler Stimulationsbohrungen genutzt werden können. Das Modell bestätigt regionale Abweichungen der Spannungsorientierung vom generellen Trend, wie z.B. in der Region des Peace River Bogens und des Bow Island Bogen. Im Zusammenhang mit der Erstellung des Alberta-Spannungsmodells wurde die Datenbank der Weltspannungskarte (WSM) in der Region Kanada um 514 neue Datensätzen erweitert und alle bestehenden Datensätze überprüft. Dies ermöglichte es nach ca. 20 Jahren, eine aktualisierte Spannungskarte für Kanada mit einem vertiefenden Fokus auf die Provinz Alberta zu publizieren. Die maximale horizontale Spannung (SHmax) in weiten Teilen Nordamerikas ist Südwest nach Nordost orientiert. Die SHmax Orientierung in Alberta ist sehr homogen, im Mittel etwa 47°. Zur Berechnung der mittleren SHmax–Orientierung auf einem regelmäßigen Gitter und zur Ableitung des Spannungsmusters dieser Orientierung wurde ein existierender Algorithmus verbessert und auf den kanadischen Datensatz angewendet. Dabei wurde der Quasi Interquartilsabstand am Kreis (QIROC) neu eingeführt, um die Varianz eines periodischen Datensatzes besser abschätzen zu können. Der modifizierte Algorithmus ist weniger anfällig gegenüber Ausreißern in periodischen Datensätzen, als der Vorgänger. Ein weiteres geomechanisch-numerisches Modell zur kontinuierlichen Beschreibung des 3-D-Spannungstensors wurde für das Gebiet „Nördlich Lägern” in der Nordschweiz erstellt. Diese Region ist ein potentieller Endlagerstandort für hochradioaktiven Abfall, eingelagert im Wirtsgestein Opalinuston. Der Fokus des Modells ist es, die Sensitivität des Spannungsfeldes von tektonischem Schub, Topographie, Störungen und den variablen Gesteinseigenschaften im mesozoischen Sedimentstapel auf den Spannungstensor zu untersuchen. Der Hauptanteil der tektonischen Spannungen, verursacht durch den Fernfeldschub von Süden, wird vor allem durch die mechanisch kompetenten Schichten im Liegenden und Hangenden des tonigen Zielhorizontes, dem Oberen Malm und dem Oberen Muschelkalk aufgenommen. Dadurch bleiben die Differenzspannungen in den tonigen Formationen relativ gering. Ost-West streichende Störungen bauen zudem Spannungen des Fernfeldes ab. Der rein gravitative Einfluss der Topographie ist gering; höhere SHmax–Magnituden unterhalb topographischer Depressionen und geringere Werte unter Anhöhen sind vor allem oberflächennah zu beobachten. Eine Kalibrierung des Modells ist nicht abschließend möglich, da im Untersuchungsgebiet keine Spannungsmagnituden zur Verfügung stehen. Diese werden erst in der nächsten Etappe der Endlagersuche, die in 2015 beginnen wird erhoben, sodass das Modell dann gegebenenfalls angepasst werden muss. Das dritte geomechanisch-numerische Modell eines Abschnitts einer tiefliegenden Goldmine in Südafrika ist räumlich gesehen nochmals eine Größenordnung kleiner als das vorherige lokale Modell in der Nordschweiz. Es wurde die Hypothese untersucht, ob das Mw 1.9 Erdbeben am 27. Dezember 2007 durch den Abbau verursacht wurde. Die Analyse der durch die Abbautätigkeit umgelagerten Spannungen unter Nutzung der Spannungsänderung des Coulomb Versagenskriteriums (DeltaCFS) zeigt klar, dass das seismische Ereignis induziert wurde. Das Gestein wurde entlang der Bruchfläche um 1.5 bis 15MPa dem Versagen näher gebracht, je nachdem welche DeltaCFS Analysemethode angewendet wird und unter Berücksichtigung der Unsicherheiten in der Orientierung der Herdflächenlösung sowie der Modellparameter. Eine Vorwärtsmodellierung eines generischen Abbauprozesses zeigt exponentiell steigende DeltaCFS–Werte mit abnehmender Distanz des Abbaus zu dem magmatischen Aufstiegskanal, in dem das Beben stattfand. Folglich haben geringe Änderungen des Abbauprozesses entscheidenden Einfluss auf die Eintretenswahrscheinlichkeit eines seismischen Ereignisses. KW - stress pattern KW - tectonic stress KW - circular statistics KW - 3D geomechanical numerical model KW - crustal stress KW - tektonische Spannungen KW - Spannungsmuster KW - krustale Spannungen KW - zirkulare Statistik KW - 3D geomechanisch-nummerische Modellierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76762 ER - TY - JOUR A1 - Ziegler, Moritz O. A1 - Reiter, Karsten A1 - Heidbach, Oliver A1 - Zang, Arno A1 - Kwiatek, Grzegorz A1 - Stromeyer, Dietrich A1 - Dahm, Torsten A1 - Dresen, Georg A1 - Hofmann, Gerhard T1 - Mining-Induced Stress Transfer and Its Relation to a 1.9 Seismic Event in an Ultra-deep South African Gold Mine JF - Pure and applied geophysics N2 - On 27 December 2007, a 1.9 seismic event occurred within a dyke in the deep-level Mponeng Gold Mine, South Africa. From the seismological network of the mine and the one from the Japanese-German Underground Acoustic Emission Research in South Africa (JAGUARS) group, the hypocentral depth (3,509 m), focal mechanism and aftershock location were estimated. Since no mining activity took place in the days before the event, dynamic triggering due to blasting can be ruled out as the cause. To investigate the hypothesis that stress transfer, due to excavation of the gold reef, induced the event, we set up a small-scale high-resolution three-dimensional (3D) geomechanical numerical model. The model consisted of the four different rock units present in the mine: quartzite (footwall), hard lava (hanging wall), conglomerate (gold reef) and diorite (dykes). The numerical solution was computed using a finite-element method with a discretised mesh of approximately elements. The initial stress state of the model is in agreement with in situ data from a neighbouring mine, and the step-wise excavation was simulated by mass removal from the gold reef. The resulting 3D stress tensor and its changes due to mining were analysed based on the Coulomb failure stress changes on the fault plane of the event. The results show that the seismic event was induced regardless of how the Coulomb failure stress changes were calculated and of the uncertainties in the fault plane solution. We also used the model to assess the seismic hazard due to the excavation towards the dyke. The resulting curve of stress changes shows a significant increase in the last in front of the dyke, indicating that small changes in the mining progress towards the dyke have a substantial impact on the stress transfer. KW - Induced seismicity KW - static stress change KW - deep-level mining KW - tabular mining KW - Coulomb failure stress KW - 3D geomechanical numerical model Y1 - 2015 U6 - https://doi.org/10.1007/s00024-015-1033-x SN - 0033-4553 SN - 1420-9136 VL - 172 IS - 10 SP - 2557 EP - 2570 PB - Springer CY - Basel ER -