TY - JOUR A1 - Kappel, David A1 - Sachse, Manuel A1 - Haack, David A1 - Otto, Katharina A. T1 - Discrete element modeling of boulder and cliff morphologies on comet 67P/Churyumov-Gerasimenko JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Even after the Rosetta mission, some of the mechanical parameters of comet 67P/Churyumov-Gerasimenko's surface material are not yet well constrained. These parameters are needed to improve our understanding of cometary activity or for planning sample return missions. Aims: We study some of the physical processes involved in the formation of selected surface features and investigate the mechanical and geometrical parameters involved. Methods: Applying the discrete element method (DEM) in a low-gravity environment, we numerically simulated the surface layer particle dynamics involved in the formation of selected morphological features. The material considered is a mixture of polydisperse ice and dust spheres with inter-particle forces given by the Hertz contact model, translational friction, rolling friction, cohesion from unsintered contacts, and optionally due to bonds from ice sintering. We determined a working set of parameters that enables the simulations to be reasonably realistic and investigated morphological changes due to modifications thereof. Results: The selected morphological features are reasonably well reproduced using model materials with a tensile strength on the order of 1-10 Pa. Increasing the diameters of the spherical particles decreases the material strength, and increasing the friction leads to a more brittle but somewhat stronger material. High friction is required to make the material sufficiently brittle to match observations, which points to the presence of very rough, even angular particles. Reasonable seismic activity does not suffice to trigger the collapses of cliffs without material heterogeneities or structural defects. Conclusions: DEM modeling can be a powerful tool to investigate mechanical parameters of cometary surface material. However, many uncertainties arise from our limited understanding of particle shapes, spatial configurations, and size distributions, all on multiple length scales. Further numerical work, in situ measurements, and sample return missions are needed to better understand the mechanics of cometary material and cometary activity. KW - comets: general KW - comets: individual: 67P KW - Churyumov-Gerasimenko KW - methods: numerical Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201937152 SN - 0004-6361 SN - 1432-0746 VL - 641 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sachse, Manuel A1 - Kappel, David A1 - Tirsch, Daniela A1 - Otto, Katharina A. T1 - Discrete element modeling of aeolian-like morphologies on comet 67P/Churyumov-Gerasimenko JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Even after the Rosetta mission, some of the mechanical parameters of comet 67P/Churyumov-Gerasimenko's surface material are still not well constrained. They are needed to improve our understanding of cometary activity or for planning sample return procedures. Aims. We discuss the physical process dominating the formation of aeolian-like surface features in the form of moats and wind taillike bedforms around obstacles and investigate the mechanical and geometrical parameters involved. Methods. By applying the discrete element method (DEM) in a low-gravity environment, we numerically simulated the dynamics of the surface layer particles and the particle stream involved in the formation of aeolian-like morphological features. The material is composed of polydisperse spherical particles that consist of a mixture of dust and water ice, with interparticle forces given by the Hertz contact model, cohesion, friction, and rolling friction. We determined a working set of parameters that enables simulations to be reasonably realistic and investigated morphological changes when modifying these parameters. Results. The aeolian-like surface features are reasonably well reproduced using model materials with a tensile strength on the order of 0.1-1 Pa. Stronger materials and obstacles with round shapes impede the formation of a moat and a wind tail. The integrated dust flux required for the formation of moats and wind tails is on the order of 100 kg m(-2), which, based on the timescale of morphological changes inferred from Rosetta images, translates to a near-surface particle density on the order of 10(-6)-10(-4) kg m(-3). Conclusions. DEM modeling of the aeolian-like surface features reveals complex formation mechanisms that involve both deposition of ejected material and surface erosion. More numerical work and additional in situ measurements or sample return missions are needed to better investigate mechanical parameters of cometary surface material and to understand the mechanics of cometary activity. KW - comets: general KW - comets: individual: 67P/Churyumov-Gerasimenko KW - methods: numerical Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202141296 SN - 0004-6361 SN - 1432-0746 VL - 662 PB - EDP Sciences CY - Les Ulis ER -