TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Rector, Michael V. A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Load on Three-Dimensional Segmental Trunk Kinematics in One-Handed Lifting: A Pilot Study JF - Journal of applied biomechanics N2 - Stability of the trunk is relevant in determining trunk response to different loading in everyday tasks initiated by the limbs. Descriptions of the trunk’s mechanical movement patterns in response to different loads while lifting objects are still under debate. Hence, the aim of this study was to analyze the influence of weight on 3-dimensional segmental motion of the trunk during 1-handed lifting. Ten asymptomatic subjects were included (29 ± 3 y; 1.79 ± 0.09 m; 75 ± 14 kg). Subjects lifted 3× a light and heavy load from the ground up onto a table. Three-dimensional segmental trunk motion was measured (12 markers; 3 segments: upper thoracic area [UTA], lower thoracic area [LTA], lumbar area [LA]). Outcomes were total motion amplitudes (ROM;[°]) for anterior flexion, lateral flexion, and rotation of each segment. The highest ROM was observed in the LTA segment (anterior flexion), and the smallest ROM in the UTA segment (lateral flexion). ROM differed for all planes between the 3 segments for both tasks (P < .001). There were no differences in ROM between light and heavy loads (P > .05). No interaction effects (load × segment) were observed, as ROM did not reveal differences between loading tasks. Regardless of weight, the 3 segments did reflect differences, supporting the relevance of multisegmental analysis. KW - trunk motion KW - kinematic trunk model KW - everyday task KW - MiSpEx* Y1 - 2016 U6 - https://doi.org/10.1123/jab.2015-0227 SN - 1065-8483 SN - 1543-2688 VL - 32 SP - 520 EP - 525 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Müller, Juliane A1 - Hadzic, Miralem A1 - Mugele, Hendrik A1 - Stoll, Josefine A1 - Müller, Steffen A1 - Mayer, Frank T1 - Effect of high-intensity perturbations during core-specific sensorimotor exercises on trunk muscle activation JF - Journal of biomechanics N2 - Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk. However, the influence of high-intensity perturbations on training efficiency is unclear within this context. Sixteen participants (29 +/- 2 yrs; 175 +/- 8 cm; 69 +/- 13 kg) were prepared with a 12-lead bilateral trunk EMG. Warm-up on a dynamometer was followed by maximum voluntary isometric trunk (flex/ext) contraction (MVC). Next, participants performed four conditions for a one-legged stance with hip abduction on a stable surface (HA) repeated randomly on an unstable surface (HAP), on a stable surface with perturbation (HA + P), and on an unstable surface with perturbation (HAP + P). Afterwards, bird dog (BD) was performed under the same conditions (BD, BDP, BD + P, BDP + P). A foam pad under the foot (HA) or the knee (BD) was used as an unstable surface. Exercises were conducted on a moveable platform. Perturbations (ACC 50 m/sec(2);100 ms duration;10rep.) were randomly applied in the anterior-posterior direction. The root mean square (RMS) normalized to MVC (%) was calculated (whole movement cycle). Muscles were grouped into ventral right and left (VR;VL), and dorsal right and left (DR;DL). Ventral Dorsal and right-left ratios were calculated (two way repeated-measures ANOVA;alpha = 0,05). Amplitudes of all muscle groups in bird dog were higher compared to hip abduction (p <= 0.0001; Range: BD: 14 +/- 3% (BD;VR) to 53 +/- 4%; HA: 7 +/- 2% (HA;DR) to 16 +/- 4% (HA;DR)). EMG-RMS showed significant differences (p < 0.001) between conditions and muscle groups per exercise. Interaction effects were only significant for HA (p = 0.02). No significant differences were present in EMG ratios (p > 0.05). Additional high-intensity perturbations during core-specific sensorimotor exercises lead to increased neuromuscular activity and therefore higher exercise intensities. However, the beneficial effects on trunk function remain unclear. Nevertheless, BD is more suitable to address trunk muscles. KW - Split-belt treadmill KW - EMG KW - Core stability KW - MiSpEx Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiomech.2017.12.013 SN - 0021-9290 SN - 1873-2380 VL - 70 SP - 212 EP - 218 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Müller, Steffen A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Prieske, Olaf A1 - Cassel, Michael A1 - Mayer, Frank T1 - Incidence of back pain in adolescent athletes BT - a prospective study JF - BMC sports science, medicine & rehabilitation N2 - Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57%/43%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1–2 = no pain; face 3–5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10%). The gender difference was 5% (m/f: 12%/7%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15% for the different sport categories. Game sports (15%) showed the highest, and explosive strength sports (6%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates. KW - Pain occurrence KW - Young athletes KW - Injury KW - Training volume Y1 - 2016 U6 - https://doi.org/10.1186/s13102-016-0064-7 SN - 2052-1847 VL - 8 PB - BioMed Central CY - London ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3–1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Mueller, Juliane A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 +/- 1.3 y; 176 +/- 11 cm; 68 +/- 11 kg; 12.4 +/- 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 +/- 1.3 y; 174 +/- 7 cm; 67 +/- 8 kg; 14.9 +/- 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized toMIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 SP - 124 EP - 132 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Müller, Juliane A1 - Mayer, Frank T1 - Validity of isokinetic trunk measurements with respect to healthy adults, athletes and low back pain patients JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - Background: Isokinetic measurements are widely used to assess strength capacity in a clinical or research context. Nevertheless, the validity of isokinetic measures for identifying strength deficits and the evaluation of therapeutic process regarding different pathologies is yet to be established. Therefore, the purpose of this review is to evaluate the validity of isokinetic measures in a specific case: that of muscular capacity in low back pain (LBP). Methods: A literature search (PubMed; ISI Web of Knowledge; The Cochrane Library) covering the last 10 years was performed. Relevant papers regarding isokinetic trunk strength measures in healthy and patients with low back pain (PLBP) were searched. Peak torque values [Nm] and peak torque normalized to body weight [Nm/kg BW] were extracted for healthy and PLBP. Ranked mean values across studies were calculated for the concentric peak torque at 60 degrees/s as well as the flexion/extension (F/E) ratio. Results: 34 publications (31 flexion/extension; 3 rotation) were suitable for reporting detailed isokinetic strength measures in healthy or LBP (untrained adults, adolescents, athletes). Adolescents and athletes were different compared to normal adults in terms of absolute trunk strength values and the F/E ratio. Furthermore, isokinetic measures evaluating therapeutic process and isokinetic rehabilitation training were infrequent in literature (8 studies). Conclusion: Isokinetic measurements are valid for measuring trunk flexion/extension strength and F/E ratio in athletes, adolescents and (untrained) adults with/without LBP. The validity of trunk rotation is questionable due to a very small number of publications whereas no reliable source regarding lateral flexion could be traced. Therefore, isokinetic dynamometry may be utilized for identifying trunk strength deficits in healthy adults and PLBP. KW - Isokinetic KW - validity KW - low back pain KW - peak torque KW - trunk Y1 - 2012 U6 - https://doi.org/10.3233/IES-2012-00482 SN - 0959-3020 VL - 20 IS - 4 SP - 255 EP - 266 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 Years JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Mueller, J, Mueller, S, Stoll, J, Baur, H, and Mayer, F. Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years. J Strength Cond Res 28(5): 1328-1334, 2014-Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 +/- 1 years; 1.62 +/- 0.11 m height; 51 +/- 12 kg mass; training: 4.5 +/- 2.6 years; training sessions/week: 4.3 +/- 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60 degrees center dot s(-1); 5 repetitions; range of motion: 55 degrees). Maximum strength was characterized by absolute peak torque (Flex(abs), Ext(abs); N center dot m), peak torque normalized to body weight (Flex(norm), Ext(norm); N center dot m center dot kg(-1) BW), and Flex(abs)/Ext(abs) ratio (RKquot). Descriptive data analysis (mean +/- SD) was completed, followed by analysis of variance (alpha = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 +/- 34 N center dot m in Flex(abs) and 140 +/- 50 N center dot m in Ext(abs) (Flex(norm) = 1.9 +/- 0.3 N center dot m center dot kg(-1) BW, Ext(norm) = 2.8 +/- 0.6 N center dot m center dot kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flex(abs) and Ext(abs) rose with increasing age almost 2-fold for males and females (Flex(abs), Ext(abs): p < 0.001). Flex(norm) and Ext(norm) increased with age for males (p < 0.001), however, not for females (Flex(norm): p = 0.26; Ext(norm): p = 0.20). RKquot (mean +/- SD: 0.71 +/- 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flex(abs)/Ext(abs) ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes. KW - core KW - adolescents KW - isokinetic KW - strength performance Y1 - 2014 U6 - https://doi.org/10.1519/JSC.0000000000000280 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 5 SP - 1328 EP - 1334 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Eichler, Sarah A1 - Rabe, Sophie A1 - Salzwedel, Annett A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Tilgner, Nina A1 - John, Michael A1 - Wegschneider, Karl A1 - Mayer, Frank A1 - Völler, Heinz T1 - Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement BT - Study protocol for a multicenter, superiority, no-blinded randomized controlled trial JF - Trials N2 - Background Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas. KW - Telerehabilitation KW - Home-based KW - Total hip replacement KW - Total knee replacement KW - Exercise therapy KW - Aftercare Y1 - 2017 U6 - https://doi.org/10.1186/s13063-017-2173-3 SN - 1745-6215 VL - 18 SP - 1 EP - 7 PB - BioMed Central CY - London ER - TY - JOUR A1 - Müller, Juliane A1 - Engel, Tilman A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects JF - PLoS one N2 - Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0174034 SN - 1932-6203 VL - 12 IS - 3 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Fröhlich, K. A1 - Otto, Christoph A1 - Mayer, Frank T1 - Back pain prevalence in adolescent athletes JF - Scandinavian journal of medicine & science in sports N2 - The research aimed to investigate back pain (BP) prevalence in a large cohort of young athletes with respect to age, gender, and sport discipline. BP (within the last 7days) was assessed with a face scale (face 1-2=no pain; face 3-5=pain) in 2116 athletes (m/f 61%/39%; 13.3 +/- 1.7years; 163.0 +/- 11.8cm; 52.6 +/- 13.9kg; 4.9 +/- 2.7 training years; 8.4 +/- 5.7 training h/week). Four different sports categories were devised (a: combat sports, b: game sports; c: explosive strength sport; d: endurance sport). Analysis was described descriptively, regarding age, gender, and sport. In addition, 95% confidence intervals (CI) were calculated. About 168 (8%) athletes were allocated into the BP group. About 9% of females and 7% of males reported BP. Athletes, 11-13years, showed a prevalence of 2-4%; while prevalence increased to 12-20% in 14- to 17-year olds. Considering sport discipline, prevalence ranged from 3% (soccer) to 14% (canoeing). Prevalences in weight lifting, judo, wrestling, rowing, and shooting were 10%; in boxing, soccer, handball, cycling, and horse riding, 6%. 95% CI ranged between 0.08-0.11. BP exists in adolescent athletes, but is uncommon and shows no gender differences. A prevalence increase after age 14 is obvious. Differentiated prevention programs in daily training routines might address sport discipline-specific BP prevalence. KW - Young athletes KW - back pain KW - prevalence KW - types of sports Y1 - 2017 U6 - https://doi.org/10.1111/sms.12664 SN - 0905-7188 SN - 1600-0838 VL - 27 SP - 448 EP - 454 PB - Wiley CY - Hoboken ER -