TY - JOUR A1 - Habel, Jan Christian A1 - Ulrich, Werner A1 - Eberle, Jonas A1 - Schmitt, Thomas T1 - Species community structures of Afrotropical butterflies differ depending on the monitoring method JF - Biodiversity and conservation N2 - Standardised biodiversity assessment is crucial to understand community structures and population dynamics of animals. There exist various methods to monitor biodiversity. Approaches differ depending on the target species group and the aim of study, and show advantages and disadvantages. The obtained data and results are influenced by local environmental conditions and seasonal variability. In a comparative approach, we studied butterfly diversity and community structure in the dryland savannah biome of south-eastern Kenya with two different methods, transect counts and bait trapping. We repeatedly collected data throughout the dry and rainy seasons, in both near natural and anthropogenically influenced landscapes. Significantly more species and individuals were recorded by transect counts than by bait trapping, though the larger and more mobile Nymphalid species (and in particular representatives of the genus Charaxes) were comparatively overrepresented in traps. The transect data revealed much more pronounced effects of land-use and seasonality than the trap data. These results show that the choice of data collection methods must depend on the general research question, habitat conditions and season. To study the relative variation of species diversity and abundance, the collection of a fraction of the total species diversity might be sufficient. However, if the focus is on a largely complete recording of species diversity, the use of various collection methods is essential. More specifically, our data clearly demonstrate that transect counts represent a reasonable method for assessing butterfly diversity for the African dryland savannah region, but fails to fully capture occurrences of all species. Bait trapping can be used only as a supplementary method for assessing some few highly mobile low-density species. KW - monitoring KW - transect count KW - bait trap KW - population dynamic KW - disturbance KW - seasonality Y1 - 2022 U6 - https://doi.org/10.1007/s10531-021-02332-2 SN - 0960-3115 SN - 1572-9710 VL - 31 IS - 1 SP - 245 EP - 259 PB - Springer CY - Dordrecht ER -