TY - JOUR A1 - Tian, Guang-Zong A1 - Hu, Jing A1 - Zhang, Heng-Xi A1 - Rademacher, Christoph A1 - Zou, Xiao-Peng A1 - Zheng, Hong-Ning A1 - Xu, Fei A1 - Wang, Xiao-Li A1 - Linker, Torsten A1 - Yin, Jian T1 - Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs) JF - Scientific reports N2 - Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo-and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1NH <-> (C1H)-C-i, (C2H)-C-i correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-24927-6 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Jing, Miao A1 - Heße, Falk A1 - Kumar, Rohini A1 - Wang, Wenqing A1 - Fischer, Thomas A1 - Walther, Marc A1 - Zink, Matthias A1 - Zech, Alraune A1 - Samaniego, Luis A1 - Kolditz, Olaf A1 - Attinger, Sabine T1 - Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nagelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 851 KW - travel-time distributions KW - surface-water KW - land-surface KW - surface/subsurface flow KW - parameter-estimation KW - subsurface flow KW - transport model KW - climate-change KW - river-basins KW - catchment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427030 SN - 1866-8372 IS - 851 SP - 1989 EP - 2007 ER - TY - JOUR A1 - Jing, Miao A1 - Hesse, Falk A1 - Kumar, Rohini A1 - Wang, Wenqing A1 - Fischer, Thomas A1 - Walther, Marc A1 - Zink, Matthias A1 - Zech, Alraune A1 - Samaniego, Luis A1 - Kolditz, Olaf A1 - Attinger, Sabine T1 - Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS) JF - Geoscientific model development : an interactive open access journal of the European Geosciences Union N2 - Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nagelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems. Y1 - 2018 U6 - https://doi.org/10.5194/gmd-11-1989-2018 SN - 1991-959X SN - 1991-9603 VL - 11 IS - 5 SP - 1989 EP - 2007 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Gao, Lin-rui A1 - Wang, Guang A1 - Zhang, Jing A1 - Li, Shuai A1 - Chuai, Manli A1 - Bao, Yongping A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation JF - Journal of Cellular Physiology N2 - An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI(+) cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. KW - cardiac progenitor migration and differentiation KW - chick embryo KW - heart tube KW - high salt KW - reactive oxygen species Y1 - 2018 U6 - https://doi.org/10.1002/jcp.26528 SN - 0021-9541 SN - 1097-4652 VL - 233 IS - 9 SP - 7120 EP - 7133 PB - Wiley CY - Hoboken ER -