TY - JOUR A1 - Ran, Niva A. A1 - Love, John A. A1 - Heiber, Michael C. A1 - Jiao, Xuechen A1 - Hughes, Michael P. A1 - Karki, Akchheta A1 - Wang, Ming A1 - Brus, Viktor V. A1 - Wang, Hengbin A1 - Neher, Dieter A1 - Ade, Harald A1 - Bazan, Guillermo C. A1 - Thuc-Quyen Nguyen, T1 - Charge generation and recombination in an organic solar cell with low energetic offsets JF - dvanced energy materials N2 - Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets. KW - energetic offset KW - fill factor KW - morphology KW - organic solar cells KW - recombination Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201701073 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Roland, Steffen A1 - Yan, Liang A1 - Zhang, Qianqian A1 - Jiao, Xuechen A1 - Hunt, Adrian A1 - Ghasemi, Masoud A1 - Ade, Harald A1 - You, Wei A1 - Neher, Dieter T1 - Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcc.7b02288 SN - 1932-7447 VL - 121 SP - 10305 EP - 10316 PB - American Chemical Society CY - Washington ER -