TY - GEN A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Herbicide risk assessments of non-target terrestrial plant communities BT - A graphical user interface for the plant community model IBC-grass T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 874 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459997 SN - 1866-8372 IS - 874 ER - TY - JOUR A1 - Reeg, Jette A1 - Schad, Thorsten A1 - Preuss, Thomas G. A1 - Solga, Andreas A1 - Körner, Katrin A1 - Mihan, Christine A1 - Jeltsch, Florian T1 - Modelling direct and indirect effects of herbicides on non-target grassland communities JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Natural grassland communities are threatened by a variety of factors, such as climate change and increasing land use by mankind. The use of plant protection products (synthetic or organic) is mandatory in agricultural food production. To avoid adverse effects on natural grasslands within agricultural areas, synthetic plant protection products are strictly regulated in Europe. However, effects of herbicides on non-target terrestrial plants are primarily studied on the level of individual plants neglecting interactions between species. In our study, we aim to extrapolate individual-level effects to the population and community level by adapting an existing spatio-temporal, individual-based plant community model (IBC-grass). We analyse the effects of herbicide exposure for three different grassland communities: 1) representative field boundary community, 2) Calthion grassland community, and 3) Arrhenatheretalia grassland community. Our simulations show that herbicide depositions can have effects on non-target plant communities resulting from direct and indirect effects on population level. The effect extent depends not only on the distance to the field, but also on the specific plant community, its disturbance regime (cutting frequency, trampling and grazing intensity) and resource level. Mechanistic modelling approaches such as IBC-grass present a promising novel approach in transferring and extrapolating standardized pot experiments to community level and thereby bridging the gap between ecotoxicological testing (e.g. in the greenhouse) and protection goals referring to real world conditions. KW - Plant community modelling KW - Herbicide exposure KW - Landscape KW - Non-target terrestrial plants KW - Field margins Y1 - 2017 U6 - https://doi.org/10.1016/j.ecolmodel.2017.01.010 SN - 0304-3800 SN - 1872-7026 VL - 348 SP - 44 EP - 55 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - A graphical user interface for the plant community model IBC-grass JF - Plos One N2 - Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects. Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0230012 SN - 1932-6203 VL - 15 IS - 3 PB - Plos 1 CY - San Francisco ER -