TY - JOUR A1 - Diluiso, Francesca A1 - Walk, Paula A1 - Manych, Niccolo A1 - Cerutti, Nicola A1 - Chipiga, Vladislav A1 - Workman, Annabelle A1 - Ayas, Ceren A1 - Cui, Ryna Yiyun A1 - Cui, Diyang A1 - Song, Kaihui A1 - Banisch, Lucy A. A1 - Moretti, Nikolaj A1 - Callaghan, Max W. A1 - Clarke, Leon A1 - Creutzig, Felix A1 - Hilaire, Jerome A1 - Jotzo, Frank A1 - Kalkuhl, Matthias A1 - Lamb, William F. A1 - Löschel, Andreas A1 - Müller-Hansen, Finn A1 - Nemet, Gregory F. A1 - Oei, Pao-Yu A1 - Sovacool, Benjamin K. A1 - Steckel, Jan Christoph A1 - Thomas, Sebastian A1 - Wiseman, John A1 - Minx, Jan C. T1 - Coal transitions - part 1 BT - a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences JF - Environmental research letters N2 - A rapid coal phase-out is needed to meet the goals of the Paris Agreement, but is hindered by serious challenges ranging from vested interests to the risks of social disruption. To understand how to organize a global coal phase-out, it is crucial to go beyond cost-effective climate mitigation scenarios and learn from the experience of previous coal transitions. Despite the relevance of the topic, evidence remains fragmented throughout different research fields, and not easily accessible. To address this gap, this paper provides a systematic map and comprehensive review of the literature on historical coal transitions. We use computer-assisted systematic mapping and review methods to chart and evaluate the available evidence on historical declines in coal production and consumption. We extracted a dataset of 278 case studies from 194 publications, covering coal transitions in 44 countries and ranging from the end of the 19th century until 2021. We find a relatively recent and rapidly expanding body of literature reflecting the growing importance of an early coal phase-out in scientific and political debates. Previous evidence has primarily focused on the United Kingdom, the United States, and Germany, while other countries that experienced large coal declines, like those in Eastern Europe, are strongly underrepresented. An increasing number of studies, mostly published in the last 5 years, has been focusing on China. Most of the countries successfully reducing coal dependency have undergone both demand-side and supply-side transitions. This supports the use of policy approaches targeting both demand and supply to achieve a complete coal phase-out. From a political economy perspective, our dataset highlights that most transitions are driven by rising production costs for coal, falling prices for alternative energies, or local environmental concerns, especially regarding air pollution. The main challenges for coal-dependent regions are structural change transformations, in particular for industry and labor. Rising unemployment is the most largely documented outcome in the sample. Policymakers at multiple levels are instrumental in facilitating coal transitions. They rely mainly on regulatory instruments to foster the transitions and compensation schemes or investment plans to deal with their transformative processes. Even though many models suggest that coal phase-outs are among the low-hanging fruits on the way to climate neutrality and meeting the international climate goals, our case studies analysis highlights the intricate political economy at work that needs to be addressed through well-designed and just policies. KW - climate change mitigation KW - coal transitions KW - evidence synthesis KW - political economy KW - systematic map Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac1b58 SN - 1748-9326 VL - 16 IS - 11 PB - Institute of Physics Publishing (IOP) CY - Bristol ER - TY - JOUR A1 - Bertram, Christoph A1 - Riahi, Keywan A1 - Hilaire, Jérôme A1 - Bosetti, Valentina A1 - Drouet, Laurent A1 - Fricko, Oliver A1 - Malik, Aman A1 - Nogueira, Larissa Pupo A1 - van der Zwaan, Bob A1 - van Ruijven, Bas A1 - van Vuuren, Detlef P. A1 - Weitzel, Matthias A1 - Longa, Francesco Dalla A1 - de Boer, Harmen-Sytze A1 - Emmerling, Johannes A1 - Fosse, Florian A1 - Fragkiadakis, Kostas A1 - Harmsen, Mathijs A1 - Keramidas, Kimon A1 - Kishimoto, Paul Natsuo A1 - Kriegler, Elmar A1 - Krey, Volker A1 - Paroussos, Leonidas A1 - Saygin, Deger A1 - Vrontisi, Zoi A1 - Luderer, Gunnar T1 - Energy system developments and investments in the decisive decade for the Paris Agreement goals JF - Environmental research letters N2 - The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets. KW - Paris Agreement KW - energy investments KW - mitigation policies KW - climate policy KW - integrated assessment modelling Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac09ae SN - 1748-9326 VL - 16 IS - 7 PB - IOP Publishing CY - Bristol ER -