TY - JOUR A1 - Heim, Olga A1 - Lenski, Johannes A1 - Schulze, Jelena A1 - Jung, Kirsten A1 - Kramer-Schadt, Stephanie A1 - Eccard, Jana A1 - Voigt, Christian C. T1 - The relevance of vegetation structures and small water bodies for bats foraging above farmland JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Bats are known to forage and commute close to vegetation structures when moving across the agricultural matrix, but the role of isolated landscape elements in arable fields for bat activity is unknown. Therefore, we investigated the influence of small isolated ponds which lie within arable fields close to vegetation structures on the flight and foraging activity of bats. Additionally, we compared species-specific activity measures between forest edges and linear structures such as hedgerows. We repeatedly recorded bat activity using passive acoustic monitoring along 20 transects extending from the vegetation edge up to 200 m into the arable field (hereafter: edge-field interface) with a small pond present at five transects per edge type (linear vs. forest). Using generalized linear mixed effect models, we analyzed the effects of edge type, pond presence and the season on species-specific flight and foraging activity within the edge-field interface. We found a higher flight activity of Nyctalus noctula and Pipistrellus pygmaeus above the arable field when a pond was present. Furthermore, Pipistrellus nathusii and Pipistrellus pipistrellus foraged more frequently at forest edges than at linear structures (e.g. hedgerows). Additionally, we found three major patterns of seasonal variation in the activity of bats along the edge-field interface. This study highlights the species-specific and dynamic use of forest and hedgerow or tree line edges by bats and their importance for different bat species in the agricultural landscape. Further, additional landscape elements such as small isolated ponds within arable fields might support the activity of bats above the open agricultural landscape, thereby facilitating agroecosystem functioning. Therefore, additional landscape elements within managed areas should be restored and protected against the conversion into arable land and better linked to surrounding landscape elements in order to efficiently support bats within the agroecosystem. KW - Hedgerow KW - Forest edge KW - Pond KW - European bats KW - Agricultural landscape KW - Wind turbines Y1 - 2017 U6 - https://doi.org/10.1016/j.baae.2017.12.001 SN - 1439-1791 SN - 1618-0089 VL - 27 SP - 9 EP - 19 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Rothwell, Joseph A. A1 - Murphy, Neil A1 - Aleksandrova, Krasimira A1 - Schulze, Matthias Bernd A1 - Bešević, Jelena A1 - Kliemann, Nathalie A1 - Jenab, Mazda A1 - Ferrari, Pietro A1 - Achaintre, David A1 - Gicquiau, Audrey A1 - Vozar, Béatrice A1 - Scalbert, Augustin A1 - Huybrechts, Inge A1 - Freisling, Heinz A1 - Prehn, Cornelia A1 - Adamski, Jerzy A1 - Cross, Amanda J. A1 - Pala, Valeria Maria A1 - Boutron-Ruault, Marie-Christine A1 - Dahm, Christina C. A1 - Overvad, Kim A1 - Gram, Inger Torhild A1 - Sandanger, Torkjel M. A1 - Skeie, Guri A1 - Jakszyn, Paula A1 - Tsilidis, Kostas K. A1 - Hughes, David J. A1 - van Guelpen, Bethany A1 - Bodén, Stina A1 - Sánchez, Maria-José A1 - Schmidt, Julie A. A1 - Katzke, Verena A1 - Kühn, Tilman A1 - Colorado-Yohar, Sandra A1 - Tumino, Rosario A1 - Bueno-de-Mesquita, Bas A1 - Vineis, Paolo A1 - Masala, Giovanna A1 - Panico, Salvatore A1 - Eriksen, Anne Kirstine A1 - Tjønneland, Anne A1 - Aune, Dagfinn A1 - Weiderpass, Elisabete A1 - Severi, Gianluca A1 - Chajès, Véronique A1 - Gunter, Marc J. T1 - Metabolic signatures of healthy lifestyle patterns and colorectal cancer risk in a European cohort JF - Clinical gastroenterology and hepatology N2 - BACKGROUND & AIMS: Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS: Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. RESULTS: Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29-0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50-0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86-1.00) overall. Signature associations were stronger in male compared with female participants. CONCLUSIONS: Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer. KW - colorectal neoplasm KW - risk factors KW - World Cancer Research Fund/American Institute for Cancer Research Recommendations KW - targeted metabolomics Y1 - 2020 U6 - https://doi.org/10.1016/j.cgh.2020.11.045 SN - 1542-3565 SN - 1542-7714 VL - 20 SP - E1061 EP - E1082 PB - Elsevier CY - New York, NY ER -