TY - JOUR A1 - Prieto, Susana A1 - Shkilnyy, Andriy A1 - Rumplasch, Claudia A1 - Ribeiro, Artur A1 - Javier Arias, F. A1 - Carlos Rodriguez-Cabello, Jose A1 - Taubert, Andreas T1 - Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Biomimetic hybrid materials based on a polymeric and an inorganic component such as calcium phosphate are potentially useful for bone repair. The current study reports on a new approach toward biomimetic hybrid materials using a set of recombinamers (recombinant protein materials obtained from a synthetic gene) as crystallization additive for calcium phosphate. The recombinamers contain elements from elastin, an elastic structural protein, and statherin, a salivary protein. Via genetic engineering, the basic elastin sequence was modified with the SN(A)15 domain of statherin, whose interaction with calcium phosphate is well-established. These new materials retain the biocompatibility, "smart" nature, and desired mechanical behavior of the elastin-like recombinamer (ELR) family. Mineralization in simulated body fluid (SBF) in the presence of these recombinamers reveals surprising differences. Two of the polymers inhibit calcium phosphate deposition (although they contain the statherin segment). In contrast, the third polymer, which has a triblock structure, efficiently controls the calcium phosphate formation, yielding spherical hydroxyapatite (HAP) nanoparticles with diameters from 1 to 3 nm after 1 week in SBF at 37 degrees C. However, at lower temperatures, no precipitation is observed with any of the polymers. The data thus suggest that the molecular design of ELRs containing statherin segments and the selection of an appropriate polymer structure are key parameters to obtain functional materials for the development of intelligent systems for hard tissue engineering and subsequent in vivo applications. Y1 - 2011 U6 - https://doi.org/10.1021/bm200287c SN - 1525-7797 VL - 12 IS - 5 SP - 1480 EP - 1486 PB - American Chemical Society CY - Washington ER -