TY - JOUR A1 - Talalaev, V A1 - Tomm, JW A1 - Elsaesser, T A1 - Zeimer, Ute A1 - Fricke, J A1 - Knauer, A A1 - Kissel, H A1 - Weyers, Markus A1 - Tarasov, GG A1 - Grenzer, Jörg A1 - Pietsch, Ullrich T1 - Carrier dynamics in laterally strain-modulated InGaAs quantum wells N2 - We investigate the transient recombination and transfer properties of nonequilibrium carriers in an In0.16Ga0.84As/GaAs quantum well (QW) with an additional lateral confinement implemented by a patterned stressor layer. The structure thus contains QW- and quantum-wire-like areas. At low excitation densities, photoluminescence (PL) transients from both areas are well described by a rate equation model for a three-level system with a saturable interlevel carrier transfer representing the lateral drift of carriers from the QW regions into the wires. Small-signal carrier lifetimes for QW, wires, and transfer time from QW to wire are 180, 190, and 28 ps, respectively. For high excitation densities the time constants of the observed transients increase, in agreement with the model. In addition, QW and wire PL lines merge indicating a smoothening of the potential difference, i.e., the effective carrier confinement caused by the stressor structure becomes weaker with increasing excitation. (c) 2005 American Institute of Physics Y1 - 2005 ER - TY - JOUR A1 - Zeimer, Ute A1 - Pietsch, Ullrich A1 - Grenzer, Joerg A1 - Fricke, J. A1 - Knauer, A. A1 - Weyers, Markus T1 - Optimised two layer overgrowth of a lateral strain-modulated nanostructure N2 - Recently it has been shown that lateral carrier confinement in an InGaAs quantum well (QW) embedded in GaAs can be achieved by using a laterally patterned InGaP stressor layer on top of the heterostructure. To exploit this effect in a device the structure has to be planarized by a second epitaxial step. It has been shown that the lateral strain modulation almost vanishes after overgrowth with GaAs, whereas overgrowth with a single ternary layer of opposite strain compared to the stressor layer suffers from strain induced decomposition. Here we show that the lateral carrier confinement of the initially free standing nanostructure can almost be maintained using a two step process for overgrowth, where a strained thin ternary layer is grown first followed by GaAs up to complete planarization of the patterned structure. Thickness and composition of the ternary layer are adjusted on the basis of finite element calculations of the strain distribution (FEM). The strain field achieved after overgrowth is probed by X-ray grazing- incidence diffraction (GID). (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0925-8388 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Grenzer, Jörg A1 - Grigorian, Souren A. A1 - Weyers, Markus A1 - Zeimer, Ute A1 - Feranchuk, S. A1 - Fricke, J. A1 - Kissel, H. A1 - Knauer, A. A1 - Tränkle, G. T1 - Nanoengineering of lateral strain-modulation in quantum well heterostructures N2 - We have developed a method to design a lateral band-gap modulation in a quantum well heterostructure. The lateral strain variation is induced by patterning of a stressor layer grown on top of a single quantum well which itself is not patterned. The three-dimensional (3D) strain distribution within the lateral nanostructure is calculated using linear elasticity theory applying a finite element technique. Based on the deformation potential approach the calculated strain distribution is translated into a local variation of the band-gap energy. Using a given vertical layer structure we are able to optimize the geometrical parameters to provide a nanostructure with maximum lateral band-gap variation. Experimentally such a structure was realized by etching a surface grating into a tensile-strained InGaP stressor layer grown on top of a compressively strained InGaAs-single quantum well. The achieved 3D strain distribution and the induced band-gap variation are successfully probed by x-ray grazing incidence diffraction and low-temperature photoluminescence measurements, respectively Y1 - 2004 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Zeimer, Ute A1 - Grenzer, Jörg A1 - Grigorian, Souren A. A1 - Fricke, J. A1 - Gramlich, S. A1 - Bugge, F. A1 - Weyers, Markus A1 - Trankle, G. T1 - Influence of lateral patterning geometry on lateral carrier confinement in strain-modulated InGaAs- nanostructures Y1 - 2003 ER - TY - JOUR A1 - Izotov, Y. I. A1 - Worseck, Gábor A1 - Schaerer, Daniel A1 - Guseva, N. G. A1 - Thuan, T. X. A1 - Fricke, K. J. A1 - Verhamme, Anne A1 - Orlitova, I. T1 - Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios JF - Monthly notices of the Royal Astronomical Society N2 - We present observations with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993-0.4317 and with high emission-line flux ratios O-32 = [O III]lambda 5007/[O II]lambda 3727 similar to 8-27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions f(esc)(LyC) in a range of 2-72 per cent. A narrow Ly alpha emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks V-sep varying from similar to 153 to similar to 345 km s(-1). We find a general increase of the LyC escape fraction with increasing O-32 and decreasing stellar mass M-star, but with a large scatter of f(esc)(LyC). A tight anticorrelation is found between f(esc)(LyC) and V-sep making V-sep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars. KW - galaxies: abundances KW - galaxies: dwarf KW - galaxies: fundamental parameters KW - galaxies: ISM KW - galaxies: starburst KW - dark ages, reionization, first stars Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1378 SN - 0035-8711 SN - 1365-2966 VL - 478 IS - 4 SP - 4851 EP - 4865 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Izotov, Y. I. A1 - Schaerer, Daniel A1 - Worseck, Gabor A1 - Guseva, N. G. A1 - Thuan, T. X. A1 - Verhamme, A. A1 - Orlitova, I. A1 - Fricke, K. J. T1 - J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons JF - Monthly notices of the Royal Astronomical Society N2 - We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z = 0.3690, is characterized by a high emission-line flux ratio O-32 = [O III] lambda 5007/[O II] lambda 3727 = 11.5. The escape fraction of the LyC radiation f(esc)(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Ly alpha emission line is detected in the spectrum of J1154+2443 with a separation between the peaks V-sep of 199 km s(-1), one of the lowest known for Ly alpha-emitting galaxies, implying a high f(esc)(Ly alpha). Comparing the extinction-corrected Ly alpha/H beta flux ratio with the case B value, we find f(esc)(Ly alpha) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O-32 with increasing f(esc)(LyC). We also find a tight anticorrelation between f(esc)(LyC) and V-sep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length alpha = 1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+log O/H = 7.65 +/- 0.01, the lowest stellar mass M-star = 108.20 M-circle dot, a similar star formation rate SFR = 18.9 M-circle dot yr(-1), and a high specific SFR of 1.2 x 10(-7) yr(-1). KW - galaxies: abundances KW - galaxies: dwarf KW - galaxies: fundamental parameters KW - galaxies: ISM KW - galaxies: starburst KW - dark ages, reionization, first stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3115 SN - 0035-8711 SN - 1365-2966 VL - 474 IS - 4 SP - 4514 EP - 4527 PB - Oxford Univ. Press CY - Oxford ER -