TY - JOUR A1 - Ilnytskyi, Jaroslav M. A1 - Neher, Dieter A1 - Saphiannikova, Marina T1 - Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture molecular dynamics study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases. KW - amorphous state KW - light polarisation KW - liquid crystal polymers KW - molecular dynamics method KW - optical hole burning KW - photochemistry Y1 - 2011 U6 - https://doi.org/10.1063/1.3614499 SN - 0021-9606 VL - 135 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Ilnytskyi, Jaroslav M. A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Allen, Michael P. T1 - Modelling elasticity and memory effects in liquid crystalline elastomers by molecular dynamics simulations JF - Soft matter N2 - We performed molecular dynamics simulations of a liquid crystal elastomer of side-chain architecture. The network is formed from a melt of 28 molecules each having a backbone of 100 hydrocarbon monomers, to which 50 side chains are attached in a syndiotactic way. Crosslinking is performed in the smectic A phase. We observe an increase of the smectic-isotropic phase transition temperature of about 5 degrees as compared to the uncrosslinked melt. Memory effects in liquid crystalline order and in sample shape are well reproduced when the elastomer is driven through the smectic-isotropic transition. Above this transition, in the isotropic phase, the polydomain smectic phase is induced by a uniaxial load. Below the transition, in a monodomain smectic A phase, both experimentally observed effects of homogeneous director reorientation and stripe formation are reproduced when the sample is stretched along the director. When the load is applied perpendicularly to the director, the sample demonstrates reversible deformation with no change of liquid crystalline order, indicating elasticity of the two-dimensional network of polymer layers. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm26499d SN - 1744-683X VL - 8 IS - 43 SP - 11123 EP - 11134 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ilnytskyi, Jaroslav A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Photo-induced deformations in azobenzene-containing side-chain polymers : molecular dynamics study N2 - We perform molecular dynamics simulations of azobenzene containing side-chain liquid crystalline polymer subject to an external model field that mimicks the reorientations of the azobenzenes upon irradiation with polarized light. The smectic phase of the polymer is studied with the field applied parallel to the nematic director, forcing the trans isomers to reorient perpendicularly to the field (the direction of which can be assosiated with the light polarization). The coupling between the reorientation of azobenzenes and mechanical deformation of the sample is found to depend on the field strength. In a weak field the original smectic order is melted gradually with no apparent change in the simulation box shape, whereas in a strong field two regimes are observed. During the first one a rapid melting of the liquid crystalline order is accompanied by the contraction of the polymer along the field direction (the effect similar to the one observed experimentally in azopenzene containing elastomers). During the slower second regime, the smectic layers are rebuilt to accomodate the preferential direction of chromophores perperdicular to the field. Y1 - 2006 UR - http://www.icmp.lviv.ua/journal/Contents.html SN - 1607-324X ER -