TY - JOUR A1 - Schrön, Martin A1 - Rosolem, Rafael A1 - Köhli, Markus A1 - Piussi, L. A1 - Schröter, I. A1 - Iwema, J. A1 - Kögler, S. A1 - Oswald, Sascha A1 - Wollschläger, U. A1 - Samaniego, Luis A1 - Dietrich, Peter A1 - Zacharias, Steffen T1 - Cosmic-ray Neutron Rover Surveys of Field Soil Moisture and the Influence of Roads JF - Water resources research N2 - Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of local structures and roads. We employed neutron transport simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that roads introduce a substantial bias in the CRNS estimation of field soil moisture compared to off-road scenarios. However, this effect becomes insignificant at distances beyond a few meters from the road. Neutron measurements on the road could overestimate the field value by up to 40 % depending on road material, width, and the surrounding field water content. The bias could be largely removed with an analytical correction function that accounts for these parameters. Additionally, an empirical approach is proposed that can be used without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between road-effect corrected measurements and field soil moisture observations. However, if knowledge about the road characteristics is missing, measurements on the road could substantially reduce the accuracy of this method. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture. Plain Language Summary Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of roads. We employed physics simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that the presence of roads biased the CRNS estimation of field soil moisture compared to nonroad scenarios. Neutron measurements could overestimate the field value by up to 40 % depending on road material, width, surrounding field water content, and distance from the road. We proposed a correction function that successfully removed this bias and works even without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between corrected measurements and other field soil moisture observations. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture. KW - road effect KW - field-scale KW - soil moisture KW - cosmic ray neutrons KW - mobile survey KW - COSMOS rover Y1 - 2018 U6 - https://doi.org/10.1029/2017WR021719 SN - 0043-1397 SN - 1944-7973 VL - 54 IS - 9 SP - 6441 EP - 6459 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Merz, Bruno A1 - Kuhlicke, Christian A1 - Kunz, Michael A1 - Pittore, Massimiliano A1 - Babeyko, Andrey A1 - Bresch, David N. A1 - Domeisen, Daniela I. A1 - Feser, Frauke A1 - Koszalka, Inga A1 - Kreibich, Heidi A1 - Pantillon, Florian A1 - Parolai, Stefano A1 - Pinto, Joaquim G. A1 - Punge, Heinz Jürgen A1 - Rivalta, Eleonora A1 - Schröter, Kai A1 - Strehlow, Karen A1 - Weisse, Ralf A1 - Wurpts, Andreas T1 - Impact forecasting to support emergency management of natural hazards JF - Reviews of geophysics N2 - Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. KW - impact forecasting KW - natural hazards KW - early warning Y1 - 2020 U6 - https://doi.org/10.1029/2020RG000704 SN - 8755-1209 SN - 1944-9208 VL - 58 IS - 4 PB - American Geophysical Union CY - Washington ER -