TY - JOUR A1 - Göttgens, Fabian A1 - Weilbacher, Peter Michael A1 - Roth, Martin M. A1 - Dreizler, Stefan A1 - Giesers, Benjamin A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Brinchmann, Jarle A1 - Kollatschny, Wolfram A1 - Monreal-Ibero, Ana A1 - Schmidt, Kasper Borello A1 - Wendt, Martin A1 - Wisotzki, Lutz A1 - Bacon, Roland T1 - Discovery of an old nova remnant in the Galactic globular cluster M 22 JF - Astronomy and astrophysics : an international weekly journal N2 - A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters compared with in the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extracted the spectrum of the nebula and used the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios were used to determine the electron temperature and density. It is estimated to have a mass of 1-17 x 10(-5) M-circle dot. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a "guest star", an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extra-solar events recorded in human history. KW - globular clusters: individual: NGC 6656 KW - novae, cataclysmic variables KW - techniques: imaging spectroscopy Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935221 SN - 1432-0746 VL - 626 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Dreizler, Stefan A1 - Wendt, Martin A1 - Wulff, Nina A1 - Bacon, Roland A1 - Wisotzki, Lutz A1 - Brinchmann, Jarle A1 - Weilbacher, Peter Michael A1 - Roth, Martin M. A1 - Monreal-Ibero, Ana T1 - MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 I. The first comprehensive HRD of a globular cluster JF - Nucleic acids research N2 - Aims. We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods. The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results. We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of v(rad) = 17.84 +/- 0.07 km s(-1) and a mean metallicity of [Fe/H] = -2.120 +/- 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion. KW - methods: data analysis KW - techniques: imaging spectroscopy KW - planets and satellites: fundamental parameters KW - stars: atmospheres KW - pulsars: general KW - globular clusters: individual: NGC 6397 Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201526949 SN - 1432-0746 VL - 588 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Wendt, Martin A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Monreal-Ibero, Ana A1 - Richter, Philipp A1 - Brinchmann, Jarle A1 - Dreizler, Stefan A1 - Weilbacher, Peter Michael A1 - Wisotzki, Lutz T1 - Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy A pilot study based on globular cluster NGC 6397 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims. We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods. This analysis utilized the fitting residuals of individual stellar spectra of NGC6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results. This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na-I and K-I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines. KW - techniques: imaging spectroscopy KW - globular clusters: individual: NGC 6397 KW - dust, extinction KW - ISM: structure KW - ISM: lines and bands Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629816 SN - 1432-0746 VL - 607 PB - EDP Sciences CY - Les Ulis ER -