TY - JOUR A1 - Muehlbauer, Thomas A1 - Granacher, Urs A1 - Borde, Ron A1 - Hortobagyi, Tibor T1 - Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults JF - Gerontology N2 - Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass. Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass (LTM) in healthy young (age: 25 years, n = 20) and old (age: 70 years, n = 20) adults. Methods: Subjects were tested for maximal isokinetic hip, knee, and ankle extension torque, leg LTM by bioimpedance, and gait performance (i.e., gait speed, stride length) at preferred and maximal gait speeds. Results: We found no evidence for a preferential relationship between gait performance and leg muscle strength compared with gait performance and leg LTM in healthy young and old adults. In old adults, hip extensor strength only predicted habitual gait speed (R-2 = 0.29, p = 0.015), whereas ankle plantarflexion strength only predicted maximal gait speed and stride length (both R-2 = 0.40, p = 0.003). Conclusions: Gait speed did not preferentially correlate with leg muscle strength or leg LTM, favoring neither outcome for predicting mobility. Thus, we recommend that both leg muscle strength and leg LTM should be tested and trained complementarily. Further, hip and ankle extension torque predicted gait performance, and thus we recommend to test and train healthy old adults by functional integrated multiarticular rather than monoarticular lower extremity strength exercises. KW - Body composition KW - Muscle torque KW - Walking KW - Seniors Y1 - 2017 U6 - https://doi.org/10.1159/000480150 SN - 0304-324X SN - 1423-0003 VL - 64 IS - 1 SP - 11 EP - 18 PB - Karger CY - Basel ER - TY - JOUR A1 - Brahms, Clemens Markus A1 - Hortobágyi, Tibor A1 - Kressig, Reto W. A1 - Granacher, Urs T1 - The Interaction between mobility status and exercise specificity in older adults JF - Exercise and sport sciences reviews N2 - Many adults older than 60 yr experience mobility limitations. Although physical exercise improves older adults' mobility, differences in baseline mobility produce large variations in individual responses to interventions, and these responses could further vary by the type and dose of exercise. Here, we propose an exercise prescription model for older adults based on their current mobility status. KW - exercise prescription KW - training intervention KW - walking speed KW - activities KW - of daily living KW - elderly Y1 - 2021 U6 - https://doi.org/10.1249/JES.0000000000000237 SN - 0091-6331 SN - 1538-3008 VL - 49 IS - 1 SP - 15 EP - 22 PB - Lippincott Williams & Wilkins CY - Hagerstown, Md. ER - TY - JOUR A1 - Lacroix, Andre A1 - Hortobagyi, Tibor A1 - Beurskens, Rainer A1 - Granacher, Urs T1 - Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Objectives The objective of this systematic review and meta-analysis was to quantify the effectiveness of supervised vs. unsupervised balance and/or resistance training programs on measures of balance and muscle strength/ power in healthy older adults. In addition, the impact of supervision on training-induced adaptive processes was evaluated in the form of dose-response relationships by analyzing randomized controlled trials that compared supervised with unsupervised trials. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SportDiscus to detect articles examining the role of supervision in balance and/or resistance training in older adults. Study Eligibility Criteria The initially identified 6041 articles were systematically screened. Studies were included if they examined balance and/or resistance training in adults aged >= 65 years with no relevant diseases and registered at least one behavioral balance (e.g., time during single leg stance) and/or muscle strength/ power outcome (e.g., time for 5-Times-Chair-Rise-Test). Finally, 11 studies were eligible for inclusion in this meta-analysis. Study Appraisal Weighted mean standardized mean differences between subjects (SMDbs) of supervised vs. unsupervised balance/resistance training studies were calculated. The included studies were coded for the following variables: number of participants, sex, age, number and type of interventions, type of balance/strength tests, and change (%) from pre- to post-intervention values. Additionally, we coded training according to the following modalities: period, frequency, volume, modalities of supervision (i.e., number of supervised/unsupervised sessions within the supervised or unsupervised training groups, respectively). Heterogeneity was computed using I 2 and chi(2) statistics. The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database scale. Results Our analyses revealed that in older adults, supervised balance/resistance training was superior compared with unsupervised balance/resistance training in improving measures of static steady-state balance (mean SMDbs = 0.28, p = 0.39), dynamic steady-state balance (mean SMDbs = 0.35, p = 0.02), proactive balance (mean SMDbs = 0.24, p = 0.05), balance test batteries (mean SMDbs = 0.53, p = 0.02), and measures of muscle strength/power (mean SMDbs = 0.51, p = 0.04). Regarding the examined dose-response relationships, our analyses showed that a number of 10-29 additional supervised sessions in the supervised training groups compared with the unsupervised training groups resulted in the largest effects for static steady-state balance (mean SMDbs = 0.35), dynamic steady-state balance (mean SMDbs = 0.37), and muscle strength/power (mean SMDbs = 1.12). Further, >= 30 additional supervised sessions in the supervised training groups were needed to produce the largest effects on proactive balance (mean SMDbs = 0.30) and balance test batteries (mean SMDbs = 0.77). Effects in favor of supervised programs were larger for studies that did not include any supervised sessions in their unsupervised programs (mean SMDbs: 0.28-1.24) compared with studies that implemented a few supervised sessions in their unsupervised programs (e.g., three supervised sessions throughout the entire intervention program; SMDbs: -0.06 to 0.41). Limitations The present findings have to be interpreted with caution because of the low number of eligible studies and the moderate methodological quality of the included studies, which is indicated by a median Physiotherapy Evidence Database scale score of 5. Furthermore, we indirectly compared dose-response relationships across studies and not from single controlled studies. Conclusions Our analyses suggest that supervised balance and/or resistance training improved measures of balance and muscle strength/power to a greater extent than unsupervised programs in older adults. Owing to the small number of available studies, we were unable to establish a clear dose-response relationship with regard to the impact of supervision. However, the positive effects of supervised training are particularly prominent when compared with completely unsupervised training programs. It is therefore recommended to include supervised sessions (i.e., two out of three sessions/week) in balance/resistance training programs to effectively improve balance and muscle strength/power in older adults. Y1 - 2017 U6 - https://doi.org/10.1007/s40279-017-0747-6 SN - 0112-1642 SN - 1179-2035 VL - 47 SP - 2341 EP - 2361 PB - Springer CY - Northcote ER - TY - JOUR A1 - Prieske, Olaf A1 - Dalager, Tina A1 - Herz, Michael A1 - Hortobagyi, Tibor A1 - Sjogaard, Gisela A1 - Sogaard, Karen A1 - Granacher, Urs T1 - Effects of Physical Exercise Training in the Workplace on Physical Fitness: A Systematic Review and Meta-analysis JF - Sports medicine N2 - Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.29 <= SMDwm <= 0.48). Medium effects were found for CRF and muscular endurance in younger workers (<= 45 years) (SMDwm = 0.71) and white-collar workers (SMDwm = 0.60), respectively. Multivariate random effects meta-regression for CRF revealed that none of the examined training modalities predicted the effects of PET on CRF (R-2 = 0). Independently computed subgroup analyses showed significant PET effects on CRF when conducted for 9-12 weeks (SMDwm = 0.31) and for 17-20 weeks (SMDwm = 0.74). Conclusions PET effects on physical fitness in healthy workers are moderated by age (CRF) and occupation type (muscular endurance). Further, independently computed subgroup analyses indicated that the training period of the PET programs may play an important role in improving CRF in workers. Y1 - 2019 U6 - https://doi.org/10.1007/s40279-019-01179-6 SN - 0112-1642 SN - 1179-2035 VL - 49 IS - 12 SP - 1903 EP - 1921 PB - Springer CY - Northcote ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez-del-Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis JF - European journal of applied physiology N2 - We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (-6.4 %, effect size = -0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. KW - Exercise KW - Muscle KW - Force KW - Power KW - Skill KW - Reflex KW - Endocrine KW - Metabolism Y1 - 2015 U6 - https://doi.org/10.1007/s00421-015-3194-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 8 SP - 1605 EP - 1625 PB - Springer CY - New York ER - TY - JOUR A1 - Gäbler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth BT - A Systematic Review and Meta-Analysis JF - Frontiers in Physiology N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6–11 years, boys age 6–13 years) or adolescents (girls age 12–18 years, boys age 14–18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power—(e.g., jump height), endurance—(e.g., peak V°O2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01057 SN - 1664-042X VL - 9 SP - 1 EP - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Gabler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Gait Speed: A Systematic Review and Meta-Analysis (vol 45, pg 1627, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0498-9 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 453 EP - 453 PB - Springer CY - Northcote ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gäbler, Martijn A1 - Devita, Paul A1 - Hortobagyi, Tibor T1 - Power Training-induced Increases in Muscle Activation during Gait in Old Adults JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - Introduction/Purpose: Aging modifies neuromuscular activation of agonist and antagonist muscles during walking. Power training can evoke adaptations in neuromuscular activation that underlie gains in muscle strength and power but it is unknown if these adaptations transfer to dynamic tasks such as walking. We examined the effects of lower-extremity power training on neuromuscular activation during level gait in old adults. Methods: Twelve community-dwelling old adults (age >= 65 yr) completed a 10-wk lower-extremity power training program and 13 old adults completed a 10-wk control period. Before and after the interventions, we measured maximal isometric muscle strength and electromyographic (EMG) activation of the right knee flexor, knee extensor, and plantarflexor muscles on a dynamometer and we measured EMG amplitudes, activation onsets and offsets, and activation duration of the knee flexors, knee extensors, and plantarflexors during gait at habitual, fast, and standardized (1.25 +/- 0.6 m.s(-1)) speeds. Results: Power training-induced increases in EMG amplitude (similar to 41%; 0.47 <= d <= 1.47; P <= 0.05) explained 33% (P = 0.049) of increases in isometric muscle strength (similar to 43%; 0.34 <= d <= 0.80; P <= 0.05). Power training-induced gains in plantarflexor activation during push-off (+11%; d = 0.38; P = 0.045) explained 57% (P = 0.004) of the gains in fast gait velocity (+4%; d = 0.31; P = 0.059). Furthermore, power training increased knee extensor activation (similar to 18%; 0.26 <= d <= 0.29; P <= 0.05) and knee extensor coactivation during the main knee flexor burst (similar to 24%, 0.26 <= d <= 0.44; P <= 0.05) at habitual and fast speed but these adaptations did not correlate with changes in gait velocity. Conclusions: Power training increased neuromuscular activation during isometric contractions and level gait in old adults. The power training-induced neuromuscular adaptations were associated with increases in isometric muscle strength and partly with increases in fast gait velocity. KW - WALKING KW - MUSCLE KW - EXERCISE KW - EMG Y1 - 2017 U6 - https://doi.org/10.1249/MSS.0000000000001345 SN - 0195-9131 SN - 1530-0315 VL - 49 SP - 2198 EP - 2205 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gaebler, Martijn A1 - DeVita, Paul A1 - Hortobagyi, Tibor T1 - Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity BT - the Potsdam Gait Study (POGS) JF - Gait & posture N2 - Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1(-35%), and increases in K2 (36%) and A2 (7%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved. KW - Walking KW - Biomechanics KW - Detraining KW - Muscle KW - Exercise Y1 - 2017 U6 - https://doi.org/10.1016/j.gaitpost.2016.12.024 SN - 0966-6362 SN - 1879-2219 VL - 52 SP - 338 EP - 344 PB - Elsevier CY - Clare ER - TY - GEN A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis (vol 45, pg 1721, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0500-6 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 457 EP - 457 PB - Springer CY - Northcote ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Deak, Dorina A1 - Farkas, Dora A1 - Blenyesi, Eszter A1 - Torok, Katalin A1 - Granacher, Urs A1 - Tollar, Jozsef T1 - Effects of exercise dose and detraining duration on mobility at late midlife BT - a randomized clinical trial JF - Gerontology N2 - Background: Office workers near retirement tend to be sedentary and can be prone to mobility limitations and diseases. We examined the dose effects of exergaming volume and duration of detraining on motor and cognitive function in office workers at late midlife to reduce sedentariness and mobility limitations. Methods: In an assessor-blinded randomized trial, 160 workers aged 55-65 years performed physically active video games in a nonimmersive form of virtual reality (exergaming) in small, supervised groups for 1 h, 1x, 2x, or 3x/week for 8 weeks followed by detraining for 8 and 16 weeks. Exergaming comprises high-intensity, full-body sensorimotor coordination, balance, endurance, and strengthening exercises. The primary outcome was the 6-minute walk test (6MWT), and secondary outcomes were body mass, self-reported physical activity, sleep quality, Berg Balance Scale, Short Physical Performance Battery, fast gait speed, dynamic balance, heart rate recovery after step test, and 6 cognitive tests. Results: The 3 groups were not different in any of the outcomes at baseline (all p > 0.05). The outcomes were stable and had acceptable reliability (intraclass correlation coefficients >= 0.334) over an 8-week control period. Training produced an inverted U-shaped dose response of no (1x), most (2x), and medium (3x/week) effects of exergaming volume in most motor and selected cognitive outcomes. The distance walked in the 6MWT (primary outcome) increased most (94 m, 19%, p < 0.05), medium (57 m, 12%, p < 0.05), and least (4 m, 1%) after exergaming 2x, 3x, or 0x (control) (all different p < 0.05). The highest responders tended to retain the exercise effects over 8 weeks of detraining, independent of training volume. This maintenance effect was less consistent after 16 weeks of detraining. Conclusion: Less was more during training and lasted longer after detraining. A medium dose volume of exergaming produced the largest clinically meaningful improvements in mobility and selected cognitive tests in 60-year-old office workers with mild mobility limitations and intact cognition. KW - exercise KW - dose response KW - walking capacity KW - cognitive function Y1 - 2021 U6 - https://doi.org/10.1159/000513505 SN - 0304-324X SN - 1423-0003 VL - 67 IS - 4 SP - 403 EP - 414 PB - Karger CY - Basel ER - TY - JOUR A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults JF - Frontiers in Human Neuroscience N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - https://doi.org/10.3389/fnhum.2022.871930 SN - 1662-5161 VL - 16 SP - 1 EP - 14 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Negyesi, Janos A1 - Hortobagyi, Tibor A1 - Hill, Jessica A1 - Granacher, Urs A1 - Nagatomi, Ryoichi T1 - Can compression garments reduce the deleterious effects of physical exercise on muscle strength? BT - a systematic review and meta-analyses JF - Sports medicine N2 - Background The use of compression garments (CGs) during or after training and competition has gained popularity in the last few decades. However, the data concerning CGs' beneficial effects on muscle strength-related outcomes after physical exercise remain inconclusive. Objective The aim was to determine whether wearing CGs during or after physical exercise would facilitate the recovery of muscle strength-related outcomes. Methods A systematic literature search was conducted across five databases (PubMed, SPORTDiscus, Web of Science, Scopus, and EBSCOhost). Data from 19 randomized controlled trials (RCTs) including 350 healthy participants were extracted and meta-analytically computed. Weighted between-study standardized mean differences (SMDs) with respect to their standard errors (SEs) were aggregated and corrected for sample size to compute overall SMDs. The type of physical exercise, the body area and timing of CG application, and the time interval between the end of the exercise and subsequent testing were assessed. Results CGs produced no strength-sparing effects (SMD [95% confidence interval]) at the following time points (t) after physical exercise: immediately <= t < 24 h: - 0.02 (- 0.22 to 0.19), p = 0.87; 24 <= t < 48 h: - 0.00 (- 0.22 to 0.21), p = 0.98; 48 <= t < 72 h: - 0.03 (- 0.43 to 0.37), p = 0.87; 72 <= t < 96 h: 0.14 (- 0.21 to 0.49), p = 0.43; 96 h <= t: 0.26 (- 0.33 to 0.85), p = 0.38. The body area where the CG was applied had no strength-sparing effects. CGs revealed weak strength-sparing effects after plyometric exercise. Conclusion Meta-analytical evidence suggests that wearing a CG during or after training does not seem to facilitate the recovery of muscle strength following physical exercise. Practitioners, athletes, coaches, and trainers should reconsider the use of CG as a tool to reduce the effects of physical exercise on muscle strength. Y1 - 2022 U6 - https://doi.org/10.1007/s40279-022-01681-4 SN - 0112-1642 SN - 1179-2035 VL - 52 IS - 9 SP - 2159 EP - 2175 PB - Springer CY - Northcote ER - TY - JOUR A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Hortobagyi, Tibor A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas T1 - The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors a systematic review JF - Sports medicine N2 - Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. Objective The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. Data Sources A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). Study Selection A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. Results The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Limitations Given that the mean PEDro quality score did not reach the predetermined cut-off of >= 6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Conclusions Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises. Y1 - 2013 U6 - https://doi.org/10.1007/s40279-013-0041-1 SN - 0112-1642 VL - 43 IS - 7 SP - 627 EP - 641 PB - Springer CY - Auckland ER - TY - GEN A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis (vol 45, pg 557, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0499-8 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 455 EP - 455 PB - Springer CY - Northcote ER - TY - JOUR A1 - Gäbler, Martijn A1 - Berberyan, Hermine S. A1 - Prieske, Olaf A1 - Elferink-Gemser, Marije Titia A1 - Hortobágyi, Tibor A1 - Warnke, Torsten A1 - Granacher, Urs T1 - Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists JF - Frontiers in physiology N2 - Purpose: The aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists. Methods: Semi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70–80% 1-RM, 6–12 repetitions per set) or LIHV (30–40% 1-RM, 60–120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance. Results: Between- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg–1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg–1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes. Conclusion: Young sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power). KW - youth sports KW - water sports KW - exercise test KW - athletic performance KW - anthropometry Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.686744 SN - 1664-042X VL - 12 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - da Silva Costa, Andreia Abud A1 - Hortobagyi, Tibor A1 - den Otter, Rob A1 - Sawers, Andrew A1 - Moraes, Renato T1 - Beam width and arm position but not cognitive task affect walking balance in older adults JF - Scientific reports N2 - Detection of changes in dynamic balance could help identify older adults at fall risk. Walking on a narrow beam with its width, cognitive load, and arm position manipulated could be an alternative to current tests. Therefore, we examined additive and interactive effects of beam width, cognitive task (CT), and arm position on dynamic balance during beam walking in older adults. Twenty older adults (69 +/- 4y) walked on 6, 8, and 10-cm wide beams (2-cm high, 4-m-long), with and without CT, with three arm positions (free, crossed, akimbo). We determined cognitive errors, distance walked, step speed, root mean square (RMS) of center of mass (COM) displacement and trunk acceleration in the frontal plane. Beam width decrease progressively reduced distance walked and increased trunk acceleration RMS. Step speed decreased on the narrowest beam and with CT. Arm crossing decreased distance walked and step speed. COM displacement RMS and cognitive errors were not affected by any manipulation. In conclusion, distance walked indicated that beam width and arm position, but less so CT, affected dynamic balance, implying that beam walking has the potential to become a test of fall risk. Stability measurements suggested effective trunk adjustments to control COM position and keep dynamic balance during the task. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-10848-y SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - London ER - TY - JOUR A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael A. A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis JF - Acta Psychologica N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - https://doi.org/10.1016/j.actpsy.2022.103540 SN - 1873-6297 VL - 225 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hagoort, Iris A1 - Vuillerme, Nicolas A1 - Hortobágyi, Tibor A1 - Lamoth, Claudine J. C. T1 - Outcome-dependent effects of walking speed and age on quantitative and qualitative gait measures JF - Gait & posture N2 - Background: Walking speed predicts many clinical outcomes in old age. However, a comprehensive assessment of how walking speed affects accelerometer based quantitative and qualitative gait measures in younger and older adults is lacking. Research question: What is the relationship between walking speed and quantitative and qualitative gait outcomes in younger and older adults? Methods: Younger (n = 27, age: 21.6) and older participants (n = 27, age: 69.5) completed 340 steps on a treadmill at speeds of 0.70 to a maximum of 1.75 m.s(-1). We used generalized additive mixed models to determine the relationship between walking speed and quantitative (stride length, stride time, stride frequency and their variability) and qualitative (stride regularity, stability, smoothness, symmetry, synchronization, predictability) gait measures extracted from trunk accelerations. Results: The type of relationship between walking speed and the majority of gait measures (quantitative and qualitative) was characterized as logarithmic, with more prominent speed-effects at speeds below 1.20 m.s(-1). Changes in quantitative measures included shorter strides, longer stride times, and a lower stride frequency, with more variability at lower speeds independent of age. For qualitative measures, we found a decrease in gait symmetry, stability and regularity in all directions with decreasing speeds, a decrease in gait predictability (Vertical, V, anterior-posterior, AP) and stronger gait synchronization (AP-mediolateral, ML, AP-V), and direction dependent effects of gait smoothness, which decreased in V direction, but increased in AP and ML directions with decreasing speeds. We found outcome-dependent effects of age on the quantitative and qualitative gait measures, with either no differences between age-groups, age-related differences that existed regardless of speed, and age-related differences in the type of relationship with walking speed. Significance: The relationship between walking speed and quantitative and qualitative gait measures, and the effects of age on this relationship, depends on the type of gait measure studied. KW - Gait quality and quantity KW - Aging KW - Walking speed KW - Treadmill KW - Generalized KW - additive mixed models Y1 - 2022 U6 - https://doi.org/10.1016/j.gaitpost.2022.01.001 SN - 0966-6362 SN - 1879-2219 VL - 93 SP - 39 EP - 46 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The objective of this systematic literature review and meta-analysis was to determine dose-response relationships in BT parameters that lead to improvements in balance in young healthy adults with different training status. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Knowledge, and SPORTDiscus from January 1984 up to May 2014 to capture all articles related to BT in young healthy adults. Study Eligibility Criteria A systematic approach was used to evaluate the 596 articles identified for initial review. Only randomized controlled studies were included if they investigated BT in young healthy adults (16-40 years) and tested at least one behavioral balance performance outcome. In total, 25 studies met the inclusion criteria for review. Study Appraisal and Synthesis Methods Studies were evaluated using the physiotherapy evidence database (PEDro) scale. Within-subject effect sizes (ESdw) and between-subject effect sizes (ESdb) were calculated. The included studies were coded for the following criteria: training status (elite athletes, sub-elite athletes, recreational athletes, untrained subjects), training modalities (training period, frequency, volume, etc.), and balance outcome (test for the assessment of steady-state, proactive, and reactive balance). Results Mean ESdb demonstrated that BT is an effective means to improve steady-state (ESdb = 0.73) and proactive balance (ESdb = 0.92) in healthy young adults. Studies including elite athletes showed the largest effects (ESdb = 1.29) on measures of steady-state balance as compared with studies analyzing sub-elite athletes (ESdb = 0.32), recreational athletes (ESdb = 0.69), and untrained subjects (ESdb = 0.82). Our analyses regarding dose-response relationships in BT revealed that a training period of 11-12 weeks (ESdb = 1.09), a training frequency of three (mean ESdb = 0.72) or six (single ESdb = 1.84) sessions per week, at least 16-19 training sessions in total (ESdb = 1.12), a duration of 11-15 min for a single training session (ESdb = 1.11), four exercises per training session (ESdb = 1.29), two sets per exercise (ESdb = 1.63), and a duration of 21-40 s for a single BT exercise (ESdb = 1.06) is most effective in improving measures of steady-state balance. Due to a small number of studies, dose-response relationships of BT for measures of proactive and reactive balance could not be qualified. Limitations The present findings must be interpreted with caution because it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited, with a mean PEDro score of 5. Conclusions Our detailed analyses revealed effective BT parameters for the improvement of steady-state balance. Thus, practitioners and coaches are advised to consult the identified dose-response relationships of this systematic literature review and meta-analysis to implement effective BT protocols in clinical and sports-related contexts. However, further research of high methodological quality is needed to (1) determine dose-response relationships of BT for measures of proactive and reactive balance, (2) define effective sequencing protocols in BT (e.g., BT before or after a regular training session), (3) discern the effects of detraining, and (4) develop a feasible and effective method to regulate training intensity in BT. Y1 - 2015 U6 - https://doi.org/10.1007/s40279-014-0284-5 SN - 0112-1642 SN - 1179-2035 VL - 45 IS - 4 SP - 557 EP - 576 PB - Springer CY - Northcote ER - TY - JOUR A1 - Hortobágyi, Tibor A1 - Vetrovsky, Tomas A1 - Balbim, Guilherme Moraes A1 - Sorte Silva, Narlon Cassio Boa A1 - Manca, Andrea A1 - Deriu, Franca A1 - Kolmos, Mia A1 - Kruuse, Christina A1 - Liu-Ambrose, Teresa A1 - Radak, Zsolt A1 - Vaczi, Mark A1 - Johansson, Hanna A1 - Rocha dos Santos, Paulo Cezar A1 - Franzen, Erika A1 - Granacher, Urs T1 - The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease JF - Ageing research reviews : ARR N2 - Objective: To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. Design: Systematic review and robust variance estimation meta-analysis with meta-regression. Data sources: Systematic search of MEDLINE, Web of Science, and CINAHL databases. Results: Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. Conclusion: Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function. KW - Aging KW - Exercise KW - Intensity Dose -response relationship KW - Cognition motor KW - function Y1 - 2022 U6 - https://doi.org/10.1016/j.arr.2022.101698 SN - 1568-1637 SN - 1872-9649 VL - 80 PB - Elsevier CY - Clare ER - TY - GEN A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 793 KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-564419 SN - 1866-8364 SP - 1 EP - 14 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez‐del‐Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance BT - a systematic review and meta-analysis T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Purpose We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Methods Systematic literature review and meta-analysis. Results Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (−6.4 %, effect size = −0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = −0.12 to 0.22, 2 studies), and athletic performance (−1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (−1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Conclusions Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 627 KW - exercise KW - muscle KW - force KW - power KW - skill KW - reflex KW - endocrine KW - metabolism Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431993 SN - 1866-8364 IS - 627 ER - TY - GEN A1 - Granacher, Urs A1 - Hortobágyi, Tibor T1 - Exercise to improve mobility in healthy aging T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 897 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432419 SN - 1866-8372 IS - 897 ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Vandervoort, A. A. A1 - DeVita, P. A1 - Hortobagyi, Tibor T1 - The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown JF - Ageing research reviews : ARR N2 - Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22% and 12% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19% and 9% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35% and 13% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions. KW - Aging KW - Strength training KW - Power training KW - Gait biomechanics Y1 - 2013 U6 - https://doi.org/10.1016/j.arr.2013.03.001 SN - 1568-1637 VL - 12 IS - 2 SP - 618 EP - 627 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Gäbler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Effects of three types of exercise interventions on healthy old adults’ gait speed BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 % (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. KW - resistance training KW - exercise intervention KW - gait speed KW - power training KW - mobility disability Y1 - 2015 U6 - https://doi.org/10.1007/s40279-015-0371-2 SN - 1179-2035 SN - 0112-1642 N1 - Erratum in: Sports Med. 2016 Mar;46(3):453. doi: 10.1007/s40279-016-0498-9. VL - 45 SP - 1627 EP - 1643 PB - Springer CY - Berlin ER - TY - GEN A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Gäbler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Effects of three types of exercise interventions on healthy old adults’ gait speed BT - a systematic review and meta-analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 % (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 840 KW - resistance training KW - exercise intervention KW - gait speed KW - power training KW - mobility disability Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431150 SN - 1866-8364 ER - TY - JOUR A1 - Gaebler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The effects of concurrent strength and endurance training on physical fitness and athletic performance in Youth BT - a systematic review and Meta-Analysis JF - Frontiers in physiology N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6-11 years, boys age 6-13 years) or adolescents (girls age 12-18 years, boys age 14-18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power-(e.g., jump height), endurance-(e.g., peak. VO2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01057 SN - 1664-042X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Hortobagyi, Tibor A1 - Beurskens, Rainer A1 - Lenzen-Grossimlinghaus, Romana A1 - Gabler, Martijn A1 - Granacher, Urs T1 - Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability: Protocol and Design of the Potsdam Gait Study (POGS) JF - Gerontology N2 - Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power training and detraining on leg muscle power and, for the first time, on complete gait biomechanics, including joint kinematics, kinetics, and muscle activation in old adults with moderate mobility disability. Methods/Design: POGS is a randomized controlled trial with two arms, each crossed over, without blinding. Arm 1 starts with a 10-week control period to assess the reliability of the tests and is then crossed over to complete 25-30 training sessions over 10 weeks. Arm 2 completes 25-30 exercise sessions over 10 weeks, followed by a 10-week follow-up (detraining) period. The exercise program is designed to improve lower extremity muscle power. Main outcome measures are: muscle power, gait speed, and gait biomechanics measured at baseline and after 10 weeks of training and 10 weeks of detraining. Discussion: It is expected that power training will increase leg muscle power measured by the weight lifted and by dynamometry, and these increased abilities become expressed in joint powers measured during gait. Such favorably modified powers will underlie the increase in step length, leading ultimately to a faster walking speed. POGS will increase our basic understanding of the biomechanical mechanisms of how power training improves gait speed in old adults with moderate levels of mobility disabilities. (C) 2016 S. Karger AG, Basel KW - Aging KW - Walking speed KW - Exercise KW - Muscle power KW - Gait kinematics KW - Gait kinetics Y1 - 2016 U6 - https://doi.org/10.1159/000444752 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 597 EP - 603 PB - Karger CY - Basel ER - TY - GEN A1 - Gäbler, Martijn A1 - Berberyan, Hermine S. A1 - Prieske, Olaf A1 - Elferink-Gemser, Marije Titia A1 - Hortobagyi, Tibor A1 - Warnke, Torsten A1 - Granacher, Urs T1 - Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Purpose: The aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists. Methods: Semi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70–80% 1-RM, 6–12 repetitions per set) or LIHV (30–40% 1-RM, 60–120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance. Results: Between- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg–1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg–1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes. Conclusion: Young sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power). T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 744 KW - youth sports KW - water sports KW - exercise test KW - athletic performance KW - anthropometry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542283 SN - 1866-8364 SP - 1 EP - 10 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Gäbler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth BT - A Systematic Review and Meta-Analysis T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6–11 years, boys age 6–13 years) or adolescents (girls age 12–18 years, boys age 14–18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power—(e.g., jump height), endurance—(e.g., peak V°O2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 471 KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417683 IS - 471 ER - TY - GEN A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael A. A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 779 KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561560 SN - 1866-8364 SP - 1 EP - 13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Uematsu, Azusa A1 - Sanders, Lianne A1 - Kliegl, Reinhold A1 - Tollar, Jozsef A1 - Moraes, Renato A1 - Granacher, Urs T1 - Beam Walking to Assess Dynamic Balance in Health and Disease BT - a Protocol for the "BEAM" Multicenter Observational Study JF - Gerontology N2 - Background: Dynamic balance keeps the vertical projection of the center of mass within the base of support while walking. Dynamic balance tests are used to predict the risks of falls and eventual falls. The psychometric properties of most dynamic balance tests are unsatisfactory and do not comprise an actual loss of balance while walking. Objectives: Using beam walking distance as a measure of dynamic balance, the BEAM consortium will determine the psychometric properties, lifespan and patient reference values, the relationship with selected “dynamic balance tests,” and the accuracy of beam walking distance to predict falls. Methods: This cross-sectional observational study will examine healthy adults in 7 decades (n = 432) at 4 centers. Center 5 will examine patients (n = 100) diagnosed with Parkinson’s disease, multiple sclerosis, stroke, and balance disorders. In test 1, all participants will be measured for demographics, medical history, muscle strength, gait, static balance, dynamic balance using beam walking under single (beam walking only) and dual task conditions (beam walking while concurrently performing an arithmetic task), and several cognitive functions. Patients and healthy participants age 50 years or older will be additionally measured for fear of falling, history of falls, miniBESTest, functional reach on a force platform, timed up and go, and reactive balance. All participants age 50 years or older will be recalled to report fear of falling and fall history 6 and 12 months after test 1. In test 2, seven to ten days after test 1, healthy young adults and age 50 years or older (n = 40) will be retested for reliability of beam walking performance. Conclusion: We expect to find that beam walking performance vis-à-vis the traditionally used balance outcomes predicts more accurately fall risks and falls. Clinical Trial Registration Number: NCT03532984. KW - Aging KW - Gait KW - Balance KW - Dual tasks KW - Falls Y1 - 2018 U6 - https://doi.org/10.1159/000493360 SN - 0304-324X SN - 1423-0003 VL - 65 IS - 4 SP - 332 EP - 339 PB - Karger CY - Basel ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Granacher, Urs A1 - Fernandez-del-Olmo, Miguel A1 - Howatson, Glyn A1 - Manca, Andrea A1 - Deriu, Franca A1 - Taube, Wolfgang A1 - Gruber, Markus A1 - Marquez, Gonzalo A1 - Lundbye-Jensen, Jesper A1 - Colomer-Poveda, David T1 - Functional relevance of resistance training-induced neuroplasticity in health and disease JF - Neuroscience & biobehavioral reviews : official journal of the International Behavioral Neuroscience Society N2 - Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease. KW - Maximal voluntary contraction (MVC) KW - strength training KW - Electromyography (EMG) KW - Transcranial magnetic brain stimulation (TMS) KW - Electroencephalography (EEG) KW - Functional magnetic resonance imaging (fMRI) KW - athletic performance KW - aging KW - Parkinson's disease KW - Multiple sclerosis KW - stroke KW - directed acyclic graphs KW - causal mediation analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.neubiorev.2020.12.019 SN - 0149-7634 SN - 1873-7528 VL - 122 SP - 79 EP - 91 PB - Elsevier CY - Oxford ER -