TY - JOUR A1 - Lachmuth, Susanne A1 - Henrichmann, Colette A1 - Horn, Juliane A1 - Pagel, Jörn A1 - Schurr, Frank M. T1 - Neighbourhood effects on plant reproduction BT - an experimental-analytical framework and its application to the invasive Senecio inaequidens JF - The journal of ecology N2 - Density dependence is of fundamental importance for population and range dynamics. Density-dependent reproduction of plants arises from competitive and facilitative plant-plant interactions that can be pollination independent or pollination mediated. In small and sparse populations, conspecific density dependence often turns from negative to positive and causes Allee effects. Reproduction may also increase with heterospecific density (community-level Allee effect), but the underlying mechanisms are poorly understood and the consequences for community dynamics can be complex. Allee effects have crucial consequences for the conservation of declining species, but also the dynamics of range edge populations. In invasive species, Allee effects may slow or stop range expansion. Observational studies in natural plant communities cannot distinguish whether reproduction is limited by pollination-mediated interactions among plants or by other neighbourhood effects (e.g. competition for abiotic resources). Even experimental pollen supply cannot distinguish whether variation in reproduction is caused by direct density effects or by plant traits correlated with density. Finally, it is unknown over which spatial scales pollination-mediated interactions occur. To circumvent these problems, we introduce a comprehensive experimental and analytical framework which simultaneously (1) manipulates pollen availability and quality by hand pollination and pollinator exclusion, (2) manipulates neighbourhoods by transplanting target plants, and (3) analyses the effects of con- and heterospecific neighbourhoods on reproduction with spatially explicit trait-based neighbourhood models. Synthesis. By manipulating both pollen availability and target plant locations within neighbourhoods, we can comprehensively analyse spatially explicit density dependence of plant reproduction. This experimental approach enhances our ability to understand the dynamics of sparse populations and of species geographical ranges. KW - Allee effect KW - biological invasion KW - competition KW - density dependence KW - facilitation KW - plant-plant interactions KW - pollination KW - reproductive success KW - spatially explicit model KW - trait-based neighbourhood model Y1 - 2017 U6 - https://doi.org/10.1111/1365-2745.12816 SN - 0022-0477 SN - 1365-2745 VL - 106 IS - 2 SP - 761 EP - 773 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Horn, Susanne A1 - Prost, Stefan A1 - Stiller, Mathias A1 - Makowiecki, Daniel A1 - Kuznetsova, Tatiana A1 - Benecke, Norbert A1 - Pucher, Erich A1 - Hufthammer, Anne K. A1 - Schouwenburg, Charles A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Ancient mitochondrial DNA and the genetic history of Eurasian beaver (Castor fiber) in Europe JF - Molecular ecology N2 - After centuries of human hunting, the Eurasian beaver Castor fiber had disappeared from most of its original range by the end of the 19th century. The surviving relict populations are characterized by both low genetic diversity and strong phylogeographical structure. However, it remains unclear whether these attributes are the result of a human-induced, late Holocene bottleneck or already existed prior to this reduction in range. To investigate genetic diversity in Eurasian beaver populations during the Holocene, we obtained mitochondrial control region DNA sequences from 48 ancient beaver samples and added 152 modern sequences from GenBank. Phylogeographical analyses of the data indicate a differentiation of European beaver populations into three mitochondrial clades. The two main clades occur in western and eastern Europe, respectively, with an early Holocene contact zone in eastern Europe near a present-day contact zone. A divergent and previously unknown clade of beavers from the Danube Basin survived until at least 6000years ago, but went extinct during the transition to modern times. Finally, we identify a recent decline in effective population size of Eurasian beavers, with a stronger bottleneck signal in the western than in the eastern clade. Our results suggest that the low genetic diversity and the strong phylogeographical structure in recent beavers are artefacts of human hunting-associated population reductions. While beaver populations have been growing rapidly since the late 19th century, genetic diversity within modern beaver populations remains considerably reduced compared to what was present prior to the period of human hunting and habitat reduction. KW - Conservation Biology KW - Phylogeography KW - Conservation Genetics KW - Population Genetics - Empirical Y1 - 2014 U6 - https://doi.org/10.1111/mec.12691 SN - 0962-1083 SN - 1365-294X VL - 23 IS - 7 SP - 1717 EP - 1729 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wen, Xi A1 - Unger, Viktoria A1 - Jurasinski, Gerald A1 - Koebsch, Franziska A1 - Horn, Fabian A1 - Rehder, Gregor A1 - Sachs, Torsten A1 - Zak, Dominik A1 - Lischeid, Gunnar A1 - Knorr, Klaus-Holger A1 - Boettcher, Michael E. A1 - Winkel, Matthias A1 - Bodelier, Paul L. E. A1 - Liebner, Susanne T1 - Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions JF - Biogeosciences N2 - The rewetting of drained peatlands alters peat geochemistry and often leads to sustained elevated methane emission. Although this methane is produced entirely by microbial activity, the distribution and abundance of methane-cycling microbes in rewetted peatlands, especially in fens, is rarely described. In this study, we compare the community composition and abundance of methane-cycling microbes in relation to peat porewater geochemistry in two rewetted fens in northeastern Germany, a coastal brackish fen and a freshwater riparian fen, with known high methane fluxes. We utilized 16S rRNA high-throughput sequencing and quantitative polymerase chain reaction (qPCR) on 16S rRNA, mcrA, and pmoA genes to determine microbial community composition and the abundance of total bacteria, methanogens, and methanotrophs. Electrical conductivity (EC) was more than 3 times higher in the coastal fen than in the riparian fen, averaging 5.3 and 1.5 mS cm(-1), respectively. Porewater concentrations of terminal electron acceptors (TEAs) varied within and among the fens. This was also reflected in similarly high intra- and inter-site variations of microbial community composition. Despite these differences in environmental conditions and electron acceptor availability, we found a low abundance of methanotrophs and a high abundance of methanogens, represented in particular by Methanosaetaceae, in both fens. This suggests that rapid (re) establishment of methanogens and slow (re) establishment of methanotrophs contributes to prolonged increased methane emissions following rewetting. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-6519-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 21 SP - 6519 EP - 6536 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Mitzscherling, Julia A1 - Horn, Fabian A1 - Winterfeld, Maria A1 - Mahler, Linda A1 - Kallmeyer, Jens A1 - Overduin, Pier Paul A1 - Schirrmeister, Lutz A1 - Winkel, Matthias A1 - Grigoriev, Mikhail N. A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Microbial community composition and abundance after millennia of submarine permafrost warming JF - Biogeosciences N2 - Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 degrees C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 degrees C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes delta O-18 and delta D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 degrees C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-3941-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 19 SP - 3941 EP - 3958 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Brauer, Achim A1 - Kaiser, Jérôme A1 - Horn, Fabian A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany JF - Journal of paleolimnology N2 - Since the beginning of the Anthropocene, lacustrine biodiversity has been influenced by climate change and human activities. These factors advance the spread of harmful cyanobacteria in lakes around the world, which affects water quality and impairs the aquatic food chain. In this study, we assessed changes in cyanobacterial community dynamics via sedimentary DNA (sedaDNA) from well-dated lake sediments of Lake Tiefer See, which is part of the Klocksin Lake Chain spanning the last 350 years. Our diversity and community analysis revealed that cyanobacterial communities form clusters according to the presence or absence of varves. Based on distance-based redundancy and variation partitioning analyses (dbRDA and VPA) we identified that intensified lake circulation inferred from vegetation openness reconstructions, delta C-13 data (a proxy for varve preservation) and total nitrogen content were abiotic factors that significantly explained the variation in the reconstructed cyanobacterial community from Lake Tiefer See sediments. Operational taxonomic units (OTUs) assigned to Microcystis sp. and Aphanizomenon sp. were identified as potential eutrophication-driven taxa of growing importance since circa common era (ca. CE) 1920 till present. This result is corroborated by a cyanobacteria lipid biomarker analysis. Furthermore, we suggest that stronger lake circulation as indicated by non-varved sediments favoured the deposition of the non-photosynthetic cyanobacteria sister clade Sericytochromatia, whereas lake bottom anoxia as indicated by subrecent- and recent varves favoured the Melainabacteria in sediments. Our findings highlight the potential of high-resolution amplicon sequencing in investigating the dynamics of past cyanobacterial communities in lake sediments and show that lake circulation, anoxic conditions, and human-induced eutrophication are main factors explaining variations in the cyanobacteria community in Lake Tiefer See during the last 350 years. KW - Late Holocene KW - Methylheptadecanes KW - Varves KW - Anthropocene KW - Sericytochromatia KW - Melainabacteria Y1 - 2021 U6 - https://doi.org/10.1007/s10933-021-00206-9 SN - 0921-2728 SN - 1573-0417 VL - 66 IS - 3 SP - 279 EP - 296 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wuttke, Matthias A1 - Li, Yong A1 - Li, Man A1 - Sieber, Karsten B. A1 - Feitosa, Mary F. A1 - Gorski, Mathias A1 - Tin, Adrienne A1 - Wang, Lihua A1 - Chu, Audrey Y. A1 - Hoppmann, Anselm A1 - Kirsten, Holger A1 - Giri, Ayush A1 - Chai, Jin-Fang A1 - Sveinbjornsson, Gardar A1 - Tayo, Bamidele O. A1 - Nutile, Teresa A1 - Fuchsberger, Christian A1 - Marten, Jonathan A1 - Cocca, Massimiliano A1 - Ghasemi, Sahar A1 - Xu, Yizhe A1 - Horn, Katrin A1 - Noce, Damia A1 - Van der Most, Peter J. A1 - Sedaghat, Sanaz A1 - Yu, Zhi A1 - Akiyama, Masato A1 - Afaq, Saima A1 - Ahluwalia, Tarunveer Singh A1 - Almgren, Peter A1 - Amin, Najaf A1 - Arnlov, Johan A1 - Bakker, Stephan J. L. A1 - Bansal, Nisha A1 - Baptista, Daniela A1 - Bergmann, Sven A1 - Biggs, Mary L. A1 - Biino, Ginevra A1 - Boehnke, Michael A1 - Boerwinkle, Eric A1 - Boissel, Mathilde A1 - Böttinger, Erwin A1 - Boutin, Thibaud S. A1 - Brenner, Hermann A1 - Brumat, Marco A1 - Burkhardt, Ralph A1 - Butterworth, Adam S. A1 - Campana, Eric A1 - Campbell, Archie A1 - Campbell, Harry A1 - Canouil, Mickael A1 - Carroll, Robert J. A1 - Catamo, Eulalia A1 - Chambers, John C. A1 - Chee, Miao-Ling A1 - Chee, Miao-Li A1 - Chen, Xu A1 - Cheng, Ching-Yu A1 - Cheng, Yurong A1 - Christensen, Kaare A1 - Cifkova, Renata A1 - Ciullo, Marina A1 - Concas, Maria Pina A1 - Cook, James P. A1 - Coresh, Josef A1 - Corre, Tanguy A1 - Sala, Cinzia Felicita A1 - Cusi, Daniele A1 - Danesh, John A1 - Daw, E. Warwick A1 - De Borst, Martin H. A1 - De Grandi, Alessandro A1 - De Mutsert, Renee A1 - De Vries, Aiko P. J. A1 - Degenhardt, Frauke A1 - Delgado, Graciela A1 - Demirkan, Ayse A1 - Di Angelantonio, Emanuele A1 - Dittrich, Katalin A1 - Divers, Jasmin A1 - Dorajoo, Rajkumar A1 - Eckardt, Kai-Uwe A1 - Ehret, Georg A1 - Elliott, Paul A1 - Endlich, Karlhans A1 - Evans, Michele K. A1 - Felix, Janine F. A1 - Foo, Valencia Hui Xian A1 - Franco, Oscar H. A1 - Franke, Andre A1 - Freedman, Barry I. A1 - Freitag-Wolf, Sandra A1 - Friedlander, Yechiel A1 - Froguel, Philippe A1 - Gansevoort, Ron T. A1 - Gao, He A1 - Gasparini, Paolo A1 - Gaziano, J. Michael A1 - Giedraitis, Vilmantas A1 - Gieger, Christian A1 - Girotto, Giorgia A1 - Giulianini, Franco A1 - Gogele, Martin A1 - Gordon, Scott D. A1 - Gudbjartsson, Daniel F. A1 - Gudnason, Vilmundur A1 - Haller, Toomas A1 - Hamet, Pavel A1 - Harris, Tamara B. A1 - Hartman, Catharina A. A1 - Hayward, Caroline A1 - Hellwege, Jacklyn N. A1 - Heng, Chew-Kiat A1 - Hicks, Andrew A. A1 - Hofer, Edith A1 - Huang, Wei A1 - Hutri-Kahonen, Nina A1 - Hwang, Shih-Jen A1 - Ikram, M. Arfan A1 - Indridason, Olafur S. A1 - Ingelsson, Erik A1 - Ising, Marcus A1 - Jaddoe, Vincent W. V. A1 - Jakobsdottir, Johanna A1 - Jonas, Jost B. A1 - Joshi, Peter K. A1 - Josyula, Navya Shilpa A1 - Jung, Bettina A1 - Kahonen, Mika A1 - Kamatani, Yoichiro A1 - Kammerer, Candace M. A1 - Kanai, Masahiro A1 - Kastarinen, Mika A1 - Kerr, Shona M. A1 - Khor, Chiea-Chuen A1 - Kiess, Wieland A1 - Kleber, Marcus E. A1 - Koenig, Wolfgang A1 - Kooner, Jaspal S. A1 - Korner, Antje A1 - Kovacs, Peter A1 - Kraja, Aldi T. A1 - Krajcoviechova, Alena A1 - Kramer, Holly A1 - Kramer, Bernhard K. A1 - Kronenberg, Florian A1 - Kubo, Michiaki A1 - Kuhnel, Brigitte A1 - Kuokkanen, Mikko A1 - Kuusisto, Johanna A1 - La Bianca, Martina A1 - Laakso, Markku A1 - Lange, Leslie A. A1 - Langefeld, Carl D. A1 - Lee, Jeannette Jen-Mai A1 - Lehne, Benjamin A1 - Lehtimaki, Terho A1 - Lieb, Wolfgang A1 - Lim, Su-Chi A1 - Lind, Lars A1 - Lindgren, Cecilia M. A1 - Liu, Jun A1 - Liu, Jianjun A1 - Loeffler, Markus A1 - Loos, Ruth J. F. A1 - Lucae, Susanne A1 - Lukas, Mary Ann A1 - Lyytikainen, Leo-Pekka A1 - Magi, Reedik A1 - Magnusson, Patrik K. E. A1 - Mahajan, Anubha A1 - Martin, Nicholas G. A1 - Martins, Jade A1 - Marz, Winfried A1 - Mascalzoni, Deborah A1 - Matsuda, Koichi A1 - Meisinger, Christa A1 - Meitinger, Thomas A1 - Melander, Olle A1 - Metspalu, Andres A1 - Mikaelsdottir, Evgenia K. A1 - Milaneschi, Yuri A1 - Miliku, Kozeta A1 - Mishra, Pashupati P. A1 - Program, V. A. Million Veteran A1 - Mohlke, Karen L. A1 - Mononen, Nina A1 - Montgomery, Grant W. A1 - Mook-Kanamori, Dennis O. A1 - Mychaleckyj, Josyf C. A1 - Nadkarni, Girish N. A1 - Nalls, Mike A. A1 - Nauck, Matthias A1 - Nikus, Kjell A1 - Ning, Boting A1 - Nolte, Ilja M. A1 - Noordam, Raymond A1 - Olafsson, Isleifur A1 - Oldehinkel, Albertine J. A1 - Orho-Melander, Marju A1 - Ouwehand, Willem H. A1 - Padmanabhan, Sandosh A1 - Palmer, Nicholette D. A1 - Palsson, Runolfur A1 - Penninx, Brenda W. J. H. A1 - Perls, Thomas A1 - Perola, Markus A1 - Pirastu, Mario A1 - Pirastu, Nicola A1 - Pistis, Giorgio A1 - Podgornaia, Anna I. A1 - Polasek, Ozren A1 - Ponte, Belen A1 - Porteous, David J. A1 - Poulain, Tanja A1 - Pramstaller, Peter P. A1 - Preuss, Michael H. A1 - Prins, Bram P. A1 - Province, Michael A. A1 - Rabelink, Ton J. A1 - Raffield, Laura M. A1 - Raitakari, Olli T. A1 - Reilly, Dermot F. A1 - Rettig, Rainer A1 - Rheinberger, Myriam A1 - Rice, Kenneth M. A1 - Ridker, Paul M. A1 - Rivadeneira, Fernando A1 - Rizzi, Federica A1 - Roberts, David J. A1 - Robino, Antonietta A1 - Rossing, Peter A1 - Rudan, Igor A1 - Rueedi, Rico A1 - Ruggiero, Daniela A1 - Ryan, Kathleen A. A1 - Saba, Yasaman A1 - Sabanayagam, Charumathi A1 - Salomaa, Veikko A1 - Salvi, Erika A1 - Saum, Kai-Uwe A1 - Schmidt, Helena A1 - Schmidt, Reinhold A1 - Ben Schottker, A1 - Schulz, Christina-Alexandra A1 - Schupf, Nicole A1 - Shaffer, Christian M. A1 - Shi, Yuan A1 - Smith, Albert V. A1 - Smith, Blair H. A1 - Soranzo, Nicole A1 - Spracklen, Cassandra N. A1 - Strauch, Konstantin A1 - Stringham, Heather M. A1 - Stumvoll, Michael A1 - Svensson, Per O. A1 - Szymczak, Silke A1 - Tai, E-Shyong A1 - Tajuddin, Salman M. A1 - Tan, Nicholas Y. Q. A1 - Taylor, Kent D. A1 - Teren, Andrej A1 - Tham, Yih-Chung A1 - Thiery, Joachim A1 - Thio, Chris H. L. A1 - Thomsen, Hauke A1 - Thorleifsson, Gudmar A1 - Toniolo, Daniela A1 - Tonjes, Anke A1 - Tremblay, Johanne A1 - Tzoulaki, Ioanna A1 - Uitterlinden, Andre G. A1 - Vaccargiu, Simona A1 - Van Dam, Rob M. A1 - Van der Harst, Pim A1 - Van Duijn, Cornelia M. A1 - Edward, Digna R. Velez A1 - Verweij, Niek A1 - Vogelezang, Suzanne A1 - Volker, Uwe A1 - Vollenweider, Peter A1 - Waeber, Gerard A1 - Waldenberger, Melanie A1 - Wallentin, Lars A1 - Wang, Ya Xing A1 - Wang, Chaolong A1 - Waterworth, Dawn M. A1 - Bin Wei, Wen A1 - White, Harvey A1 - Whitfield, John B. A1 - Wild, Sarah H. A1 - Wilson, James F. A1 - Wojczynski, Mary K. A1 - Wong, Charlene A1 - Wong, Tien-Yin A1 - Xu, Liang A1 - Yang, Qiong A1 - Yasuda, Masayuki A1 - Yerges-Armstrong, Laura M. A1 - Zhang, Weihua A1 - Zonderman, Alan B. A1 - Rotter, Jerome I. A1 - Bochud, Murielle A1 - Psaty, Bruce M. A1 - Vitart, Veronique A1 - Wilson, James G. A1 - Dehghan, Abbas A1 - Parsa, Afshin A1 - Chasman, Daniel I. A1 - Ho, Kevin A1 - Morris, Andrew P. A1 - Devuyst, Olivier A1 - Akilesh, Shreeram A1 - Pendergrass, Sarah A. A1 - Sim, Xueling A1 - Boger, Carsten A. A1 - Okada, Yukinori A1 - Edwards, Todd L. A1 - Snieder, Harold A1 - Stefansson, Kari A1 - Hung, Adriana M. A1 - Heid, Iris M. A1 - Scholz, Markus A1 - Teumer, Alexander A1 - Kottgen, Anna A1 - Pattaro, Cristian T1 - A catalog of genetic loci associated with kidney function from analyses of a million individuals JF - Nature genetics N2 - Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research. Y1 - 2019 U6 - https://doi.org/10.1038/s41588-019-0407-x SN - 1061-4036 SN - 1546-1718 VL - 51 IS - 6 SP - 957 EP - + PB - Nature Publ. Group CY - New York ER -