TY - JOUR A1 - Egbe, D. A. M. A1 - Kietzke, Thomas A1 - Carbonnier, B. A1 - Muhlbacher, D. A1 - Horhold, H. H. A1 - Neher, Dieter A1 - Pakula, T. T1 - Synthesis, characterization, and photophysical, electrochemical, electroluminescent, and photovoltaic properties of yne-containing CN-PPVs N2 - Alkoxy-substituted CN-containing phenylene-vinylene-alt-phenylene-ethynylene hybrid polymers (CN-PPV-PPE), 3a, 3b, and 7a, were obtained from luminophoric dialdehydes 1 by step growth polymerization via Knoevenagel reaction as high molecular-weight materials. Corresponding CN-free polymers 3c and 7b and an ethynylene-free polymer 5 with similar side chains were synthesized for the purpose of comparison. The chemical structures of the polymers were confirmed by IR, H-1 and C-13 NMR, and elemental analysis. Thermal characterization was conducted by means of thermogravimetric analysis and differential scanning calorimetry. Morphology was investigated by means of optical microscopy and small-angle light scattering. The final morphologies are determined by the molecular characteristics (side chains volume fraction, backbone stiffness) of the studied polymers. All the CN-containing polymers 3b, 5, and 7a exhibit higher fluorescence quantum yield in solid state (50 to 60%), but lower quantum yields (12-40%) in dilute chloroform solution, in total contrast to CN-free polymers 3c, 3d, and 7b. Identical optical, E-g(opt), and electrochemical band gap energies, E- g(ec), were obtained for 3b, 3c and 3d with intrinsic self-assembly ability, whereas a discrepancy, DeltaE(g), was observed in the cases of the fully substituted polymers 5, 7a, and 7b, whose values are dependent on the level of backbone stiffness and length of the side groups combined with the presence or absence of CN units. The incorporation of CN units in 3b and 7a lowers their respective LUMO level by 220 and 350 meV compared to their corresponding CN-free counterparts 3c and 7b, suggesting an improvement of the electron-accepting strength. Polymers 3b and 7a are efficient electron acceptors suitable for photovoltaic application. The experiments indicate that 3b is a better electron acceptor when used together with M3EH-PPV, but transport properties seem to be better for 7a. With 3b, high external quantum efficiencies of up to 23%, an open circuit voltage of up to 1.52 V, and a white light energy efficiency of 0.65% could be realized in bilayer solar cell devices. LED-devices of configuration ITO/PEDOT:PSS/polymer/Ca/Al from 3b, 3c, 7a, and 7b showed low turn-on voltages between 2 and 2.5 V. The CN-free polymers 3c and 7b exhibit far better EL parameters than their corresponding CN containing counterparts 3b and 7a Y1 - 2004 ER - TY - JOUR A1 - Kietzke, Thomas A1 - Horhold, H. H. A1 - Neher, Dieter T1 - Efficient polymer solar cells based on M3EH-PPV N2 - We report on polymer blend solar cells with an external quantum efficiency of more than 30% and a hi-h overall energy conversion efficiency (ECE) under white light illumination (100 mW/cm(2)) Of Lip to 1.7% using a blend of M3EH- PPV (poly [2,5-dimethoxy-1,4-phenylene-1,2-ethenylene-2-methoxy-5(2-ethylhexyloxy)-(1,4-pheiiylene-1,2-ethenylene)]) and CN-ether-PPV (poly[oxa-1,4-phenylene-1,2(1-cyano)ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)ethellyiene-1,4- phenylene]). We attribute these high efficiencies to the formation of a vertically composition graded structure during spin coating Photoluminescence measurements performed on the blend layers indicated the formation of exciplexes between both types of polymers, which we propose to be one factor preventing even higher efficiencies Y1 - 2005 ER - TY - JOUR A1 - Kulikovsky, Lazar A1 - Neher, Dieter A1 - Mecher, E. A1 - Meerholz, Klaus A1 - Horhold, H. H. A1 - Ostroverkhova, O. T1 - Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite N2 - All parameters describing the charge carrier dynamics in a poly(phenylene vinylene)-based photorefractive (PR) composite relevant to PR grating dynamics were determined using photoconductivity studies under various illumination conditions. In particular, the values of the coefficients for trap filling and recombination of charges with ionized sensitizer molecules could be extracted independently. It is concluded that the PR growth time without preillumination is mostly determined by the competition between deep trap filling and recombination with ionized sensitizer molecules. Further, the pronounced increase in PR speed upon homogeneous preillumination (gating) as reported recently is quantitatively explained by deep trap filling Y1 - 2004 SN - 1098-0121 ER - TY - JOUR A1 - Däubler, Thomas Karl A1 - Neher, Dieter A1 - Rost, H. A1 - Hörhold, Hans-Heinrich T1 - Efficient bulk photogeneration of charge carriers in arylamino-PPV polymer sandwich cells Y1 - 1999 ER -