TY - JOUR A1 - Wang, Enli A1 - He, Di A1 - Wang, Jing A1 - Lilley, Julianne M. A1 - Christy, Brendan A1 - Hoffmann, Munir P. A1 - O'Leary, Garry A1 - Hatfield, Jerry L. A1 - Ledda, Luigi A1 - Deligios, Paola A. A1 - Grant, Brian A1 - Jing, Qi A1 - Nendel, Claas A1 - Kage, Henning A1 - Qian, Budong A1 - Rezaei, Ehsan Eyshi A1 - Smith, Ward A1 - Weymann, Wiebke A1 - Ewert, Frank T1 - How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change? JF - Climatic change N2 - To better understand how climate change might influence global canola production, scientists from six countries have completed the first inter-comparison of eight crop models for simulating growth and seed yield of canola, based on experimental data from six sites across five countries. A sensitivity analysis was conducted with a combination of five levels of atmospheric CO2 concentrations, seven temperature changes, five precipitation changes, together with five nitrogen application rates. Our results were in several aspects different from those of previous model inter-comparison studies for wheat, maize, rice, and potato crops. A partial model calibration only on phenology led to very poor simulation of aboveground biomass and seed yield of canola, even from the ensemble median or mean. A full calibration with additional data of leaf area index, biomass, and yield from one treatment at each site reduced simulation error of seed yield from 43.8 to 18.0%, but the uncertainty in simulation results remained large. Such calibration (with data from one treatment) was not able to constrain model parameters to reduce simulation uncertainty across the wide range of environments. Using a multi-model ensemble mean or median reduced the uncertainty of yield simulations, but the simulation error remained much larger than observation errors, indicating no guarantee that the ensemble mean/median would predict the correct responses. Using multi-model ensemble median, canola yield was projected to decline with rising temperature (2.5-5.7% per degrees C), but to increase with increasing CO2 concentration (4.6-8.3% per 100-ppm), rainfall (2.1-6.1% per 10% increase), and nitrogen rates (1.3-6.0% per 10% increase) depending on locations. Due to the large uncertainty, these results need to be treated with caution. We further discuss the need to collect new data to improve modelling of several key physiological processes of canola for increased confidence in future climate impact assessments. KW - AgMIP KW - Brassica napus L. KW - Model calibration KW - Model improvement; KW - Multimodel ensemble KW - Sensitivity analysis Y1 - 2022 U6 - https://doi.org/10.1007/s10584-022-03375-2 SN - 0165-0009 SN - 1573-1480 VL - 172 IS - 1-2 PB - Springer Nature CY - Dordrecht ER - TY - JOUR A1 - Pohanková, Eva A1 - Hlavinka, Petr A1 - Kersebaum, Kurt-Christian A1 - Rodríguez, Alfredo A1 - Balek, Jan A1 - Bednařík, Martin A1 - Dubrovský, Martin A1 - Gobin, Anne A1 - Hoogenboom, Gerrit A1 - Moriondo, Marco A1 - Nendel, Claas A1 - Olesen, Jørgen E. E. A1 - Rötter, Reimund Paul A1 - Ruiz-Ramos, Margarita A1 - Shelia, Vakhtang A1 - Stella, Tommaso A1 - Hoffmann, Munir Paul A1 - Takáč, Jozef A1 - Eitzinger, Josef A1 - Dibari, Camilla A1 - Ferrise, Roberto A1 - Bláhová, Monika A1 - Trnka, Miroslav T1 - Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites JF - European journal of agronomy N2 - Crop rotation, fertilization and residue management affect the water balance and crop production and can lead to different sensitivities to climate change. To assess the impacts of climate change on crop rotations (CRs), the crop model ensemble (APSIM,AQUACROP, CROPSYST, DAISY, DSSAT, HERMES, MONICA) was used. The yields and water balance of two CRs with the same set of crops (winter wheat, silage maize, spring barley and winter rape) in a continuous transient run from 1961 to 2080 were simulated. CR1 was without cover crops and without manure application. Straw after the harvest was exported from the fields. CR2 included cover crops, manure application and crop residue retention left on field. Simulations were performed using two soil types (Chernozem, Cambisol) within three sites in the Czech Republic, which represent temperature and precipitation gradients for crops in Central Europe. For the description of future climatic conditions, seven climate scenarios were used. Six of them had increasing CO & nbsp;concentrations according RCP 8.5, one had no CO2 increase in the future. The output of an ensemble expected higher productivity by 0.82 t/ha/year and 2.04 t/ha/year for yields and aboveground biomass in the future (2051-2080). However, if the direct effect of a CO2 increase is not considered, the average yields for lowlands will be lower. Compared to CR1, CR2 showed higher average yields of 1.26 t/ha/year for current climatic conditions and 1.41 t/ha/year for future climatic conditions. For the majority of climate change scenarios, the crop model ensemble agrees on the projected yield increase in C3 crops in the future for CR2 but not for CR1. Higher agreement for future yield increases was found for Chernozem, while for Cambisol, lower yields under dry climate scenarios are expected. For silage maize, changes in simulated yields depend on locality. If the same hybrid will be used in the future, then yield reductions should be expected within lower altitudes. The results indicate the potential for higher biomass production from cover crops, but CR2 is associated with almost 120 mm higher evapotranspiration compared to that of CR1 over a 5-year cycle for lowland stations in the future, which in the case of the rainfed agriculture could affect the long-term soil water balance. This could affect groundwater replenishment, especially for locations with fine textured soils, although the findings of this study highlight the potential for the soil water-holding capacity to buffer against the adverse weather conditions. KW - Yields KW - Evapotranspiration KW - Winter wheat KW - Silage maize KW - Spring barley KW - Winter oilseed rape Y1 - 2022 U6 - https://doi.org/10.1016/j.eja.2021.126446 SN - 1161-0301 SN - 1873-7331 VL - 134 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nendel, Claas A1 - Reckling, Moritz A1 - Debaeke, Philippe A1 - Schulz, Susanne A1 - Berg-Mohnicke, Michael A1 - Constantin, Julie A1 - Fronzek, Stefan A1 - Hoffmann, Munir A1 - Jakšić, Snežana A1 - Kersebaum, Kurt-Christian A1 - Klimek-Kopyra, Agnieszka A1 - Raynal, Hélène A1 - Schoving, Céline A1 - Stella, Tommaso A1 - Battisti, Rafael T1 - Future area expansion outweighs increasing drought risk for soybean in Europe JF - Global change biology N2 - The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions. KW - genotypes KW - legumes KW - maturity groups KW - protein crops KW - protein transition KW - resilience Y1 - 2022 U6 - https://doi.org/10.1111/gcb.16562 SN - 1354-1013 SN - 1365-2486 VL - 29 IS - 5 SP - 1340 EP - 1358 PB - Wiley-Blackwell CY - Ocford [u.a] ER -