TY - JOUR A1 - Schulte, Luise A1 - Meucci, Stefano A1 - Stoof-Leichsenring, Kathleen R. A1 - Heitkam, Tony A1 - Schmidt, Nicola A1 - von Hippel, Barbara A1 - Andreev, Andrei A. A1 - Diekmann, Bernhard A1 - Biskaborn, Boris A1 - Wagner, Bernd A1 - Melles, Martin A1 - Pestryakova, Lyudmila A. A1 - Alsos, Inger G. A1 - Clarke, Charlotte A1 - Krutovsky, Konstantin A1 - Herzschuh, Ulrike T1 - Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA JF - Communications biology N2 - Climate change is expected to cause major shifts in boreal forests which are in vast areas of Siberia dominated by two species of the deciduous needle tree larch (Larix). The species differ markedly in their ecosystem functions, thus shifts in their respective ranges are of global relevance. However, drivers of species distribution are not well understood, in part because paleoecological data at species level are lacking. This study tracks Larix species distribution in time and space using target enrichment on sedimentary ancient DNA extracts from eight lakes across Siberia. We discovered that Larix sibirica, presently dominating in western Siberia, likely migrated to its northern distribution area only in the Holocene at around 10,000 years before present (ka BP), and had a much wider eastern distribution around 33 ka BP. Samples dated to the Last Glacial Maximum (around 21 ka BP), consistently show genotypes of L. gmelinii. Our results suggest climate as a strong determinant of species distribution in Larix and provide temporal and spatial data for species projection in a changing climate. Using ancient sedimentary DNA from up to 50 kya, dramatic distributional shifts are documented in two dominant boreal larch species, likely guided by environmental changes suggesting climate as a strong determinant of species distribution. Y1 - 2022 U6 - https://doi.org/10.1038/s42003-022-03455-0 SN - 2399-3642 VL - 5 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Xu, Qinghai A1 - Li, Wenjia A1 - Zhang, Yanrong A1 - Luo, Mingyu A1 - Chen, Fahu T1 - Human activities have reduced plant diversity in eastern China over the last two millennia JF - Global change biology N2 - Understanding the history and regional singularities of human impact on vegetation is key to developing strategies for sustainable ecosystem management. In this study, fossil and modern pollen datasets from China are employed to investigate temporal changes in pollen composition, analogue quality, and pollen diversity during the Holocene. Anthropogenic disturbance and vegetation's responses are also assessed. Results reveal that pollen assemblages from non-forest communities fail to provide evidence of human impact for the western part of China (annual precipitation less than 400 mm and/or elevation more than 3000 m.a.s.l.), as inferred from the stable quality of modern analogues, principal components, and diversity of species and communities throughout the Holocene. For the eastern part of China, the proportion of fossil pollen spectra with good modern analogues increases from ca. 50% to ca. 80% during the last 2 millennia, indicating an enhanced intensity of anthropogenic disturbance on vegetation. This disturbance has caused the pollen spectra to become taxonomically less diverse over space (reduced abundances of arboreal taxa and increased abundances of herbaceous taxa), highlighting a reduced south-north differentiation and divergence from past vegetation between regions in the eastern part of China. We recommend that care is taken in eastern China when basing the development of ecosystem management strategies on vegetation changes in the region during the last 2000 years, since humans have significantly disturbed the vegetation during this period. KW - analogue quality KW - human-vegetation interaction KW - land use KW - latitudinal KW - zonation KW - plant diversity KW - pollen Y1 - 2022 U6 - https://doi.org/10.1111/gcb.16274 SN - 1354-1013 SN - 1365-2486 VL - 28 IS - 16 SP - 4962 EP - 4976 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wang, Yongbo A1 - Bekeschus, Benjamin A1 - Handorf, Dörthe A1 - Liu, Xingqi A1 - Dallmeyer, Anne A1 - Herzschuh, Ulrike T1 - Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with "Xie-Beni" index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or even descending airflows in the adjacent subtropical regions, resulting in a precipitation deficit compared to the late Holocene. Our conceptual model therefore integrates regionally contrasting moisture changes into the Global Monsoon hypothesis. (C) 2017 Elsevier Ltd. All rights reserved. KW - Global monsoon KW - Holocene KW - Eastern hemisphere KW - Moisture evolution Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.06.006 SN - 0277-3791 VL - 169 SP - 231 EP - 242 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zimmermann, Heike A1 - Stoof-Leichsenring, Kathleen R. A1 - Kruse, Stefan A1 - Nürnberg, Dirk A1 - Tiedemann, Ralf A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA from the subarctic North Pacific BT - How sea ice, salinity, and insolation dynamics have shaped diatom composition and richness over the past 20,000 years JF - Paleoceanography and paleoclimatology N2 - We traced diatom composition and diversity through time using diatom-derived sedimentary ancient DNA (sedaDNA) from eastern continental slope sediments off Kamchatka (North Pacific) by applying a short, diatom-specific marker on 63 samples in a DNA metabarcoding approach. The sequences were assigned to diatoms that are common in the area and characteristic of cold water. SedaDNA allowed us to observe shifts of potential lineages from species of the genus Chaetoceros that can be related to different climatic phases, suggesting that pre-adapted ecotypes might have played a role in the long-term success of species in areas of changing environmental conditions. These sedaDNA results complement our understanding of the long-term history of diatom assemblages and their general relationship to environmental conditions of the past. Sea-ice diatoms (Pauliella taeniata [Grunow] Round & Basson, Attheya septentrionalis [ostrup] R. M. Crawford and Nitzschia frigida [Grunow]) detected during the late glacial and Younger Dryas are in agreement with previous sea-ice reconstructions. A positive correlation between pennate diatom richness and the sea-ice proxy IP25 suggests that sea ice fosters pennate diatom richness, whereas a negative correlation with June insolation and temperature points to unfavorable conditions during the Holocene. A sharp increase in proportions of freshwater diatoms at similar to 11.1 cal kyr BP implies the influence of terrestrial runoff and coincides with the loss of 42% of diatom sequence variants. We assume that reduced salinity at this time stabilized vertical stratification which limited the replenishment of nutrients in the euphotic zone. KW - Bacillariophyceae KW - DNA metabarcoding KW - glacial / interglacial transition KW - northwestern Pacific KW - richness KW - sedaDNA Y1 - 2021 U6 - https://doi.org/10.1029/2020PA004091 SN - 2572-4525 VL - 36 IS - 4 PB - Wiley CY - Hoboken, NJ ER -