TY - JOUR A1 - Schwarte, Sandra A1 - Brust, Henrike A1 - Steup, Martin A1 - Tiedemann, Ralph T1 - Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana Y1 - 2013 UR - http://www.biomedcentral.com/content/pdf/1756-0500-6-84.pdf U6 - https://doi.org/10.1186/1756-0500-6-84 ER - TY - JOUR A1 - Fettke, Jörg A1 - Leifels, Lydia A1 - Brust, Henrike A1 - Herbst, Karoline A1 - Steup, Martin T1 - Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature JF - Journal of experimental botany N2 - Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-C-14]glucose 1-phosphate, [U-C-14]sucrose, [U-C-14]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-C-14]sucrose plus unlabelled equimolar glucose 1-phosphate. C-14-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced C-14 incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 degrees C but the flux of the sucrose-dependent route strongly increases above 20 degrees C. Results are confirmed by in vitro experiments using [U-C-14]glucose 1-phosphate or adenosine-[U-C-14]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C-14-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. KW - glucose 1-phosphate KW - phosphorylase KW - potato tubers KW - starch KW - starch synthase Y1 - 2012 U6 - https://doi.org/10.1093/jxb/ers014 SN - 0022-0957 VL - 63 IS - 8 SP - 3011 EP - 3029 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Jüppner, Jessica A1 - Mubeen, Umarah A1 - Leisse, Andrea A1 - Caldana, Camila A1 - Brust, Henrike A1 - Steup, Martin A1 - Herrmann, Marion A1 - Steinhauser, Dirk A1 - Giavalisco, Patrick T1 - Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii JF - The plant journal N2 - Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well-established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi-omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two-phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10-15million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time-resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in-depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems. KW - Chlamydomonas reinhardtii KW - synchronized cell cultures KW - photoautotrophic growth KW - cell cycle KW - metabolomics KW - lipidomics KW - systems biology KW - two-phase extraction KW - diurnal cycle KW - technical advance Y1 - 2017 U6 - https://doi.org/10.1111/tpj.13642 SN - 0960-7412 SN - 1365-313X VL - 92 SP - 331 EP - 343 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Paparelli, Eleonora A1 - Gonzali, Silvia A1 - Parlanti, Sandro A1 - Novi, Giacomo A1 - Giorgi, Federico M. A1 - Licausi, Francesco A1 - Kosmacz, Monika A1 - Feil, Regina A1 - Lunn, John Edward A1 - Brust, Henrike A1 - van Dongen, Joost T. A1 - Steup, Martin A1 - Perata, Pierdomenico T1 - Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression. Y1 - 2012 U6 - https://doi.org/10.1104/pp.112.204016 SN - 0032-0889 VL - 160 IS - 3 SP - 1237 EP - 1250 PB - American Society of Plant Physiologists CY - Rockville ER - TY - GEN A1 - Schwarte, Sandra A1 - Brust, Henrike A1 - Steup, Martin A1 - Tiedemann, Ralph T1 - Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana T2 - BMC Research Notes N2 - Background Natural accessions of Arabidopsis thaliana are a well-known system to measure levels of intraspecific genetic variation. Leaf starch content correlates negatively with biomass. Starch is synthesized by the coordinated action of many (iso)enzymes. Quantitatively dominant is the repetitive transfer of glucosyl residues to the non-reducing ends of α-glucans as mediated by starch synthases. In the genome of A. thaliana, there are five classes of starch synthases, designated as soluble starch synthases (SSI, SSII, SSIII, and SSIV) and granule-bound synthase (GBSS). Each class is represented by a single gene. The five genes are homologous in functional domains due to their common origin, but have evolved individual features as well. Here, we analyze the extent of genetic variation in these fundamental protein classes as well as possible functional implications on transcript and protein levels. Findings Intraspecific sequence variation of the five starch synthases was determined by sequencing the entire loci including promoter regions from 30 worldwide distributed accessions of A. thaliana. In all genes, a considerable number of nucleotide polymorphisms was observed, both in non-coding and coding regions, and several amino acid substitutions were identified in functional domains. Furthermore, promoters possess numerous polymorphisms in potentially regulatory cis-acting regions. By realtime experiments performed with selected accessions, we demonstrate that DNA sequence divergence correlates with significant differences in transcript levels. Conclusions Except for AtSSII, all starch synthase classes clustered into two or three groups of haplotypes, respectively. Significant difference in transcript levels among haplotype clusters in AtSSIV provides evidence for cis-regulation. By contrast, no such correlation was found for AtSSI, AtSSII, AtSSIII, and AtGBSS, suggesting trans-regulation. The expression data presented here point to a regulation by common trans-regulatory transcription factors which ensures a coordinated action of the products of these four genes during starch granule biosynthesis. The apparent cis-regulation of AtSSIV might be related to its role in the initiation of de novo biosynthesis of granules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 400 KW - Arabidopsis thaliana KW - starch synthases KW - genetic variation KW - transcript level Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401128 ER -