TY - JOUR A1 - Frodl, Thomas A1 - Janowitz, Deborah A1 - Schmaal, Lianne A1 - Tozzi, Leonardo A1 - Dobrowolny, Henrik A1 - Stein, Dan J. A1 - Veltman, Dick J. A1 - Wittfeld, Katharina A1 - van Erp, Theo G. M. A1 - Jahanshad, Neda A1 - Block, Andrea A1 - Hegenscheid, Katrin A1 - Voelzke, Henry A1 - Lagopoulos, Jim A1 - Hatton, Sean N. A1 - Hickie, Ian B. A1 - Frey, Eva Maria A1 - Carballedo, Angela A1 - Brooks, Samantha J. A1 - Vuletic, Daniella A1 - Uhlmann, Anne A1 - Veer, Ilya M. A1 - Walter, Henrik A1 - Schnell, Knut A1 - Grotegerd, Dominik A1 - Arolt, Volker A1 - Kugel, Harald A1 - Schramm, Elisabeth A1 - Konrad, Carsten A1 - Zurowski, Bartosz A1 - Baune, Bernhard T. A1 - van der Wee, Nic J. A. A1 - van Tol, Marie-Jose A1 - Penninx, Brenda W. J. H. A1 - Thompson, Paul M. A1 - Hibar, Derrek P. A1 - Dannlowski, Udo A1 - Grabe, Hans J. T1 - Childhood adversity impacts on brain subcortical structures relevant to depression JF - Journal of psychiatric research N2 - Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of the present study was to investigate whether childhood adversity is associated with subcortical volumes and how it interacts with a diagnosis of MDD and sex. Within the ENIGMA-MDD network, nine university partner sites, which assessed childhood adversity and magnetic resonance imaging in patients with MDD and controls, took part in the current joint mega-analysis. In this largest effort world-wide to identify subcortical brain structure differences related to childhood adversity, 3036 participants were analyzed for subcortical brain volumes using FreeSurfer. A significant interaction was evident between childhood adversity, MDD diagnosis, sex, and region. Increased exposure to childhood adversity was associated with smaller caudate volumes in females independent of MDD. All subcategories of childhood adversity were negatively associated with caudate volumes in females - in particular emotional neglect and physical neglect (independently from age, ICV, imaging site and MDD diagnosis). There was no interaction effect between childhood adversity and MDD diagnosis on subcortical brain volumes. Childhood adversity is one of the contributors to brain structural abnormalities. It is associated with subcortical brain abnormalities that are relevant to psychiatric disorders such as depression. (C) 2016 Published by Elsevier Ltd. KW - Depression KW - Childhood adversity KW - MRI KW - Caudate KW - Hippocampus KW - ENIGMA Y1 - 2016 U6 - https://doi.org/10.1016/j.jpsychires.2016.11.010 SN - 0022-3956 SN - 1879-1379 VL - 86 SP - 58 EP - 65 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Friedel, Eva A1 - Sebold, Miriam A1 - Kuitunen-Paul, Sören A1 - Nebe, Stephan A1 - Veer, Ilya M. A1 - Zimmermann, Ulrich S. A1 - Schlagenhauf, Florian A1 - Smolka, Michael N. A1 - Rapp, Michael A. A1 - Walter, Henrik A1 - Heinz, Andreas T1 - How Accumulated Real Life Stress Experience and Cognitive Speed Interact on Decision-Making Processes JF - Frontiers in human neuroscienc N2 - Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities. KW - chronic stress KW - model-based learning KW - model-free learning KW - decision making KW - cognitive speed KW - real-life events Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00302 SN - 1662-5161 VL - 11 SP - 1 EP - 9 PB - Frontiers Research Foundation CY - Lausanne ER -