TY - JOUR A1 - Altafim, Ruy Alberto Pisani A1 - Basso, Heitor Cury A1 - Altafim, Ruy Alberto Pisani A1 - Lima, L. A1 - de Aquino, C. V. A1 - Goncalves Neto, Luiz A1 - Gerhard, Reimund T1 - Piezoelectrets from thermo-formed bubble structures of fluoropolymer-electret films N2 - The acetone extracts of the root bark and stem bark of Erythrina sacleuxii showed antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the acetone extract of the root bark afforded a new isoflavone, 7-hydroxy-4 -methoxy-3'- prenylisoflavone (trivial name 5-deoxy-3' - prenylbiochanin A) along with known isoflavonoids as the antiplasmodial principles. Flavonoids and isoflavonoids isolated from the stem bark of E. sucleuxii were also tested and showed antiplasmodial activities. The structures were determined on the basis of spectroscopic evidence. Y1 - 2006 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2006.247822 SN - 1070-9878 ER - TY - JOUR A1 - Basso, Heitor Cury A1 - Altafim, Ruy Alberto Pisani A1 - Altafim, Ruy Alberto Pisani A1 - Mellinger, Axel A1 - Fang, Peng A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Three-layer ferroelectrets from perforated Teflon-PTFE films fused between two homogeneous Teflon-FEP films Y1 - 2007 SN - 978-1-4244-1482-6 ER - TY - JOUR A1 - Altafim, Ruy Alberto Pisani A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Altafim, Ruy Alberto Pisani A1 - Basso, Heitor Cury A1 - Jenninger, Werner A1 - Wagner, Joachim T1 - Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications N2 - We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 degrees C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d(33) coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 degrees C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc. Y1 - 2009 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.3159039 SN - 0021-8979 ER - TY - JOUR A1 - Fang, Peng A1 - Wang, Feipeng A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Basso, Heitor Cury T1 - Three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films JF - Applied physics : A, Materials science & processing N2 - A process for preparing three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films is introduced. Samples are made from commercial FEP films by means of laser cutting, laser bonding, electrode evaporation, and high-field poling. The observed dielectric-resonance spectra demonstrate the piezoelectricity of the FEP sandwiches. Piezoelectric d (33) coefficients up to a few hundred pC/N are achieved. Charging at elevated temperatures can increase the thermal stability of the piezoelectrets. Isothermal experiments for approximately 15 min demonstrate that samples charged at 140A degrees C keep their piezoelectric activity up to at least 120A degrees C and retain 70% of their initial d (33) even at 130A degrees C. Acoustical measurements show a relatively flat frequency response in the range between 300 Hz and 20 kHz. Y1 - 2011 U6 - https://doi.org/10.1007/s00339-010-6008-2 SN - 0947-8396 SN - 1432-0630 VL - 103 IS - 2 SP - 455 EP - 461 PB - Springer CY - New York ER - TY - JOUR A1 - Basso, Heitor Cury A1 - Monteiro, Jose Roberto B. de A. A1 - Mazulquim, Daniel Baladelli A1 - de Paula, Geyverson Teixeira A1 - Goncalves Neto, Luiz A1 - Gerhard, Reimund T1 - Alternating current-generated plasma discharges for the controlled direct current charging of ferroelectrets JF - Journal of applied physics N2 - The standard charging process for polymer ferroelectrets, e. g., from polypropylene foams or layered film systems involves the application of high DC fields either to metal electrodes or via a corona discharge. In this often-used process, the DC field triggers the internal breakdown and limits the final charge densities inside the ferroelectret cavities and, thus, the final polarization. Here, an AC + DC charging procedure is proposed and demonstrated in which a high-voltage high-frequency (HV-HF) wave train is applied together with a DC poling voltage. Thus, the internal dielectric-barrier discharges in the ferroelectret cavities are induced by the HV-HF wave train, while the final charge and polarization level is controlled separately through the applied DC voltage. In the new process, the frequency and the amplitude of the HV-HF wave train must be kept within critical boundaries that are closely related to the characteristics of the respective ferroelectrets. The charging method has been tested and investigated on a fluoropolymer-film system with a single well-defined cylindrical cavity. It is found that the internal electrical polarization of the cavity can be easily controlled and increases linearly with the applied DC voltage up to the breakdown voltage of the cavity. In the standard charging method, however, the DC voltage would have to be chosen above the respective breakdown voltage. With the new method, control of the HV-HF wave-train duration prevents a plasma-induced deterioration of the polymer surfaces inside the cavities. It is observed that the frequency of the HV-HF wave train during ferroelectret charging and the temperature applied during poling of ferroelectrics serve an analogous purpose. The analogy and the similarities between the proposed ferroelectret charging method and the poling of ferroelectric materials or dipole electrets at elevated temperatures with subsequent cooling under field are discussed. Y1 - 2013 U6 - https://doi.org/10.1063/1.4821113 SN - 0021-8979 SN - 1089-7550 VL - 114 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Qiu, Xunlin A1 - Holländer, Lars A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Basso, Heitor Cury T1 - Direct hysteresis measurements on ferroelectret films by means of a modified Sawyer-Tower circuit JF - Journal of applied physics N2 - Ferro- and piezo-electrets are non-polar polymer foams or film systems with internally charged cavities. Since their invention more than two decades ago, ferroelectrets have become a welcome addition to the range of piezo-, pyro-, and ferro-electric materials available for device applications. A polarization-versus-electric-field hysteresis is an essential feature of a ferroelectric material and may also be used for determining some of its main properties. Here, a modified Sawyer-Tower circuit and a combination of unipolar and bipolar voltage waveforms are employed to record hysteresis curves on cellular-foam polypropylene ferroelectret films and on tubular-channel fluoroethylenepropylene copolymer ferroelectret film systems. Internal dielectric barrier discharges (DBDs) are required for depositing the internal charges in ferroelectrets. The true amount of charge transferred during the internal DBDs is obtained from voltage measurements on a standard capacitor connected in series with the sample, but with a much larger capacitance than the sample. Another standard capacitor with a much smaller capacitance-which is, however, still considerably larger than the sample capacitance-is also connected in series as a high-voltage divider protecting the electrometer against destructive breakdown. It is shown how the DBDs inside the polymer cavities lead to phenomenological hysteresis curves that cannot be distinguished from the hysteresis loops found on other ferroic materials. The physical mechanisms behind the hysteresis behavior are described and discussed. Y1 - 2013 U6 - https://doi.org/10.1063/1.4809556 SN - 0021-8979 VL - 113 IS - 22 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Basso, Heitor Cury A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Temporal evolution of the re-breakdown voltage in small gaps from nanoseconds to milliseconds JF - Applied physics letters N2 - A detailed understanding of electric breakdown in dielectrics is of scientific and technological interest. In gaseous dielectrics, a so-called re-breakdown is sometimes observed after extinction of the previous discharge. Although time-dependent re-breakdown voltage is essentially known, its behavior immediately after the previous discharge is not precisely understood. We present an electronic circuit for accurate measurements of the time-dependent re-breakdown voltage in small gaps from tens of nanoseconds to several milliseconds after the previous spark. Results from such experiments are compared with earlier findings, and relevant physical mechanisms such as heating of the gas, decay of the plasma, and ionization of excited atoms and molecules are discussed. It is confirmed that the thermal model is not valid at times below several microseconds. Y1 - 2013 U6 - https://doi.org/10.1063/1.4773518 SN - 0003-6951 VL - 102 IS - 1 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Altafim, Ruy Alberto Pisani A1 - Rychkov, Dmitry A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Basso, Heitor Cury A1 - Altafim, Ruy Alberto Pisani A1 - Melzer, Martin T1 - Laminated tubular-channel ferroelectret systems from low-density Polyethylene Films and from Fluoroethylene-propylene Copolymer Films - A comparison JF - IEEE transactions on dielectrics and electrical insulation N2 - A template-based lamination technique for the manufacture of ferroelectrets from uniform electret films was recently reported. In the present work, this technique is used to prepare similar ferroelectret structures from low-density polyethylene (LDPE) films and from fluoro-ethylene-propylene (FEP) copolymer films. A comparative analysis of the pressure-, temperature-, and frequency-dependent piezoelectric properties has been performed on the two ferroelectret systems. It is observed that the FEP ferroelectrets exhibit better piezoelectric responses and are thermally more stable. The difference between the piezoelectric d(33) coefficients of the two ferroelectret systems is partially explained here by their different elastic moduli. The anti-resonance peaks of both structures have been investigated by means of dielectric resonance spectroscopy and electroacoustic sound-pressure measurements. A difference of more than 10 kHz is observed between the anti-resonance frequencies of the two ferroelectret systems. KW - Ferroelectrets KW - piezoelectrets KW - piezoelectricity KW - electro-mechanical transducers KW - static-pressure dependence KW - temperature dependence KW - frequency response Y1 - 2012 SN - 1070-9878 VL - 19 IS - 4 SP - 1116 EP - 1123 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Altafim, Ruy Alberto Pisani A1 - Altafim, Ruy Alberto Pisani A1 - Qiu, Xunlin A1 - Raabe, Sebastian A1 - Wirges, Werner A1 - Basso, Heitor Cury A1 - Gerhard, Reimund T1 - Fluoropolymer piezoelectrets with tubular channels resonance behavior controlled by channel geometry JF - Applied physics : A, Materials science & processing N2 - Ferro- or piezoelectrets are dielectric materials with two elastically very different macroscopic phases and electrically charged interfaces between them. One of the newer piezoelectret variants is a system of two fluoroethylenepropylene (FEP) films that are first laminated around a polytetrafluoroethylene (PTFE) template. Then, by removing the PTFE template, a two-layer FEP structure with open tubular channels is obtained. After electrical charging, the channels form easily deformable macroscopic electric dipoles whose changes under mechanical or electrical stress lead to significant direct or inverse piezoelectricity, respectively. Here, different PTFE templates are employed to generate channel geometries that vary in height or width. It is shown that the control of the channel geometry allows a direct adjustment of the resonance frequencies in the tubular-channel piezoelectrets. By combining several different channel widths in a single ferroelectret, it is possible to obtain multiple resonance peaks that may lead to a rather flat frequency-response region of the transducer material. A phenomenological relation between the resonance frequency and the geometrical parameters of a tubular channel is also presented. This relation may help to design piezoelectrets with a specific frequency response. Y1 - 2012 U6 - https://doi.org/10.1007/s00339-012-6848-z SN - 0947-8396 VL - 107 IS - 4 SP - 965 EP - 970 PB - Springer CY - New York ER - TY - JOUR A1 - Basso, Heitor Cury A1 - Aquino, C. V. A1 - Altafim, Ruy Alberto Pisani A1 - Altafim, Ruy Alberto Pisani A1 - Gerhard, Reimund T1 - Piezoelectricity of a single bubble formed by two oppositely charged Teflon-FEP films Y1 - 2006 SN - 1-4244-0547-5 ER -