TY - JOUR A1 - Nettels, Daniel A1 - Müller-Späth, Sonja A1 - Küster, Frank A1 - Hofmann, Hagen A1 - Haenni, Domminik A1 - Rüegger, Stefan A1 - Reymond, Luc A1 - Hoffmann, Armin S. A1 - Kubelka, Jan A1 - Heinz, Benjamin A1 - Gast, Klaus A1 - Best, Robert B. A1 - Schuler, Benjamin T1 - Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins N2 - We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With singlemolecule FRET, this question can be addressed even under nearnative conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperaturedependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse. Y1 - 2009 UR - http://www.pnas.org/content/106/49/20740.full.pdf+html SN - 0027-8424 ER - TY - THES A1 - Heinz, Benjamin T1 - Stabilität und Faltung der Pektatlyase aus Bacillus subtilis : der Austausch der Asparaginleiter gegen einen hydrophoben Stapel Y1 - 2006 CY - Potsdam ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Seitz, Harald A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Direct electron irradiation of DNA in a fully aqueous environment BT - Damage determination in combination with Monte Carlo simulations JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D-1/2 = 1.7 +/- 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp07707b SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 3 SP - 1798 EP - 1805 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Wellhausen, Robert A1 - Hermann, Sabrina A1 - Seitz, Harald A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Zeman, Johannes A1 - Uhlig, Frank A1 - Smiatek, Jens A1 - Sturm, Heinz T1 - Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcb.5b09506 SN - 1520-6106 VL - 119 IS - 49 SP - 15212 EP - 15220 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Kunte, Hans-Jorg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine GEANT4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E-1/2 = 6 +/- 4 eV. The presented method is applicable for ionizing radiation (e.g.,.gamma rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.052419 SN - 2470-0045 SN - 2470-0053 VL - 95 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Laun, Konstantin A1 - Duffus, Benjamin R. A1 - Wahlefeld, Stefan A1 - Katz, Sagie A1 - Belger, Dennis Heinz A1 - Hildebrandt, Peter A1 - Mroginski, Maria Andrea A1 - Leimkühler, Silke A1 - Zebger, Ingo T1 - Infrared spectroscopy flucidates the inhibitor binding sites in a metal-dependent formate dehydrogenase JF - Chemistry - a European journal N2 - Biological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587. KW - CO2 reduction KW - DFT KW - formate oxidation KW - inhibition kinetics KW - IR KW - spectroscopy KW - molybdoenzyme Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201091 SN - 0947-6539 SN - 1521-3765 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Heit, Benjamin A1 - Yuan, Xiaohui A1 - Weber, Michael H. A1 - Geissler, Wolfram H. A1 - Jokat, Wilfried A1 - Lushetile, Bufelo A1 - Hoffmann, Karl-Heinz T1 - Crustal thickness and V-p/V-s ratio in NW Namibia from receiver functions: Evidence for magmatic underplating due to mantle plume-crust interaction JF - Geophysical research letters N2 - A seismological network was operated at the junction of the aseismic Walvis Ridge with the northwestern Namibian coast. We mapped crustal thickness and bulk V-p/V-s ratio by the H-k analysis of receiver functions. In the Damara Belt, the crustal thickness is similar to 35km with a V-p/V-s ratio of <1.75. The crust is similar to 30km thick at the coast in the Kaoko Belt. Strong variations in crustal thickness and V-p/V-s ratios are found at the landfall of the Walvis Ridge. Here and at similar to 150km northeast of the coast, the crustal thickness increases dramatically reaching 44km and the V-p/V-s ratios are extremely high (similar to 1.89). These anomalies are interpreted as magmatic underplating produced by the mantle plume during the breakup of Gondwana. The area affected by the plume is smaller than 300km in diameter, possibly ruling out the existence of a large plume head under the continent during the breakup. KW - crustal thickness KW - V-p KW - V-s ratios KW - magmatic underplating KW - Walvis Ridge KW - continental breakup Y1 - 2015 U6 - https://doi.org/10.1002/2015GL063704 SN - 0094-8276 SN - 1944-8007 VL - 42 IS - 9 SP - 3330 EP - 3337 PB - American Geophysical Union CY - Washington ER -