TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Kruse, Stefan A1 - Müller, Juliane A1 - Stein, Ruediger A1 - Tiedemann, Ralf A1 - Herzschuh, Ulrike T1 - Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years JF - Ocean science N2 - The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7% of our sequences being assigned to diatoms across 18 different families, with 38.6% of them being resolved to species and 25.8% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2% of the assemblage point towards past sea-ice presence. Y1 - 2020 U6 - https://doi.org/10.5194/os-16-1017-2020 SN - 1812-0784 VL - 16 IS - 5 SP - 1017 EP - 1032 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Kruse, Stefan A1 - Müller, Juliane A1 - Stein, Ruediger A1 - Tiedemann, Ralf A1 - Herzschuh, Ulrike T1 - Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years JF - Ocean Science N2 - The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 % of our sequences being assigned to diatoms across 18 different families, with 38.6 % of them being resolved to species and 25.8 % to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations – after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 % of the assemblage point towards past sea-ice presence. KW - last glacial maximum KW - surface temperatures KW - species composition KW - greenland shelf KW - Disko Bay KW - phytoplankton KW - communities KW - variability KW - diversity KW - Svalbard Y1 - 2019 VL - 16 IS - 5 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - BOOK A1 - Grimmer, Ellen A1 - Rode, Jürgen A1 - Zimmermann, Heike Hildegard T1 - Sportkartei 5.-10. : Bd. 6 Gymnastik, Tanz T3 - Gymnastik/Tanz Y1 - 1998 SN - 3-89291-849-X VL - 6 PB - pb-Verl. CY - Puchheim ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schirrmeister, Lutz A1 - Schwamborn, Georg A1 - Herzschuh, Ulrike T1 - The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data JF - Genes N2 - Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. KW - sedaDNA KW - metabarcoding KW - trnL KW - single-nucleotide polymorphism (SNP) KW - treeline KW - MIS 5 to 1 KW - permafrost deposits KW - radiocarbon ages KW - palaeoenvironment KW - Larix Y1 - 2017 U6 - https://doi.org/10.3390/genes8100273 SN - 2073-4425 VL - 8 IS - 10 SP - 273 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz A1 - Overduin, Pier Paul A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia) JF - Biogeosciences N2 - Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-575-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 IS - 3 SP - 575 EP - 596 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wetterich, Sebastian A1 - Rudaya, Natalia A1 - Kuznetsov, Vladislav A1 - Maksimov, Fedor A1 - Opel, Thomas A1 - Meyer, Hanno A1 - Günther, Frank A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Zimmermann, Heike Hildegard A1 - Strauss, Jens A1 - Starikova, Anna A1 - Fuchs, Margret A1 - Schirrmeister, Lutz T1 - Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka JF - Quaternary research : an interdisciplinary journal N2 - Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a–c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial–Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka. KW - Cryostratigraphy KW - Ice wedges KW - Stable isotopes KW - Pollen KW - Radioisotope disequilibria dating KW - Beringia Y1 - 2019 U6 - https://doi.org/10.1017/qua.2019.6 SN - 0033-5894 SN - 1096-0287 VL - 92 IS - 2 SP - 530 EP - 548 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz A1 - Overduin, Pier Paul A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 670 KW - NE Siberia KW - vegetation patterns KW - environmental DNA KW - Arctic vegetation KW - frozen sediments KW - lake-sediments KW - gas-production KW - carbon KW - polygon KW - climate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417130 SN - 1866-8372 IS - 670 ER - TY - THES A1 - Zimmermann, Heike Hildegard T1 - Vegetation changes and treeline dynamics in northern Siberia since the last interglacial revealed by sedimentary ancient DNA metabarcoding and organelle genome assembly of modern larches Y1 - 2017 ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Harms, Lars A1 - Epp, Laura Saskia A1 - Mewes, Nick A1 - Bernhardt, Nadine A1 - Kruse, Stefan A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Wieczorek, Mareike A1 - Trense, Daronja A1 - Herzschuh, Ulrike T1 - Chloroplast and mitochondrial genetic variation of larches at the Siberian tundrataiga ecotone revealed by de novo assembly JF - PLoS one N2 - Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/ L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216966 SN - 1932-6203 VL - 14 IS - 7 PB - PLoS CY - San Fransisco ER -